
Video 1: Intro to Floating point



(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part 
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the 
integer part and 3 bits store the fractional part:
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(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the 
integer part and 32 bits store the fractional part:

Smallest number:

Largest number:
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Fixed-point representation
How can we decide where to locate the binary point?

More bits on the integer part?

More bits on the fractional part? ÷÷:::÷÷÷÷%
.
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(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible. 

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits  for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between  the 
amount of range and precision. It can be hard to decide how much 
you need of each!

Fix: Let the binary point “float”
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Scientific Notation

In scientific notation, a number can be expressed in the form

* = ± , × 10)

where , is a coefficient in the range 1 ≤ , < 10 and 2 is the exponent. 

1165.7 = 1.1657 × 10!

0.0004728 = 4.728 × 10$&

Note how the decimal point “floats”!
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Floating-point numbers
A floating-point number can represent numbers of different order of 
magnitude (very large and very small) with the same number of fixed 
digits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2$
3 is the significand, normally a fractional value in the range [1.0,2.0)

2 is the exponent
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Floating-point numbers

Numerical Form:

! = ±$ × 2+ = ±',. '-'.'/…'0× 2+

!! ∈ 0,1
Exponent range: * ∈ ,,.
Precision: p = 0 + 1

Fractional part of significand
(* digits)
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Video 2: Normalized floating point
representation



Converting floating points

Convert (39.6875)"! = 100111.1011 # into floating point 
representation

1. 001111011×25

0.1001111011×26



Normalized floating-point numbers
Normalized floating point numbers are expressed as 

! = ± 1. '-'.'/…'0× 2+ = ± 1. 3 × 2+

where " is the fractional part of the significand, # is the exponent and 
$! ∈ 0,1 .
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• Exponent range:

• Precision:

• Smallest positive normalized FP number:  

• Largest positive normalized FP number: 

Normalized floating-point numbers
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Normalized floating point number scale
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Floating-point numbers: Simple example
A ”toy” number system can be represented as * = ±1. %"%#×2)
for + ∈ [−4,4] and '' ∈ {0,1}.
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Floating-point numbers: Simple example
A ”toy” number system can be represented as * = ±1. %"%#×2)
for + ∈ [−4,4] and '' ∈ {0,1}.
1.00 ! ×2" = 1
1.01 ! ×2" = 1.25
1.10 ! ×2" = 1.5
1.11 ! ×2" = 1.75

1.00 ! ×2#$ = 0.5
1.01 ! ×2#$ = 0.625
1.10 ! ×2#$ = 0.75
1.11 ! ×2#$ = 0.875

1.00 ! ×2$ = 2
1.01 ! ×2$ = 2.5
1.10 ! ×2$ = 3.0
1.11 ! ×2$ = 3.5

1.00 ! ×2! = 4.0
1.01 ! ×2! = 5.0
1.10 ! ×2! = 6.0
1.11 ! ×2! = 7.0

1.00 ! ×2% = 8.0
1.01 ! ×2% = 10.0
1.10 ! ×2% = 12.0
1.11 ! ×2% = 14.0

1.00 ! ×2& = 16.0
1.01 ! ×2& = 20.0
1.10 ! ×2& = 24.0
1.11 ! ×2& = 28.0

1.00 ! ×2#! = 0.25
1.01 ! ×2#! = 0.3125
1.10 ! ×2#! = 0.375
1.11 ! ×2#! = 0.4375

1.00 ! ×2#% = 0.125
1.01 ! ×2#% = 0.15625
1.10 ! ×2#% = 0.1875
1.11 ! ×2#% = 0.21875

1.00 ! ×2#& = 0.0625
1.01 ! ×2#& = 0.078125
1.10 ! ×2#& = 0.09375
1.11 ! ×2#& = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we 
will show only the positive numbers in this example.
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* = ±1. %"%#×2) for + ∈ [−4,4] and '' ∈ {0,1}

• Smallest normalized positive number: 

• Largest normalized positive number:
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4 = ±1. '"'%×2( for + ∈ [−4,4] and '' ∈ {0,1}

Machine epsilon
• Machine epsilon (1%): is defined as the distance (gap) between 1 and the 

next larger floating point number.
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Range of integer numbers

4 = ±1. '"'%×2( for + ∈ [−4,4] and '' ∈ {0,1}

Suppose you have this following normalized floating point representation:
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