
Video 1: Intro to Floating point

(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the
integer part and 3 bits store the fractional part:

2!2"2#2$2% 2!"2!#2!$
1 0 1 1 1.0 1 1 !

Smallest number:

Largest number:

.¥¥¥÷:¥¥¥..::i÷÷
(00000 . 001) z = (O . 125) ,o

(l l l l l . l l l)z =(31 .875) ,o

(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the
integer part and 32 bits store the fractional part:

Smallest number:

Largest number:

"$"…"#"""!. %"%#%$…%$# # = '
&'!

$"
"& 2& +'

&'"

$#
%& 2(&

= "!"× 2!"+"!#× 2!#+⋯+ "#× 2#+'"× 2$"+'%× 2%+⋯+ '!%× 2$!%

23 '
, 420, 12-12-2 , z

-

32

000,02--0-00%-01=1 2-32=10-9

(l l l . . .
1 .
I 1 . . . 1)

z
E 109

? ?

¥73

Fixed-point representation
How can we decide where to locate the binary point?

More bits on the integer part?

More bits on the fractional part? ÷÷:::÷÷÷÷%
.

5 bits→ do . b.bzbzbc, } 0.0625
#(a.a.ao.b.b.5888.io go.es

.

do ..

-

(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible.

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between the
amount of range and precision. It can be hard to decide how much
you need of each!

Fix: Let the binary point “float”

!!!"!#. #"#!#$! !"!#. #"#!#$#% !OR

Scientific Notation

In scientific notation, a number can be expressed in the form

* = ± , × 10)

where , is a coefficient in the range 1 ≤ , < 10 and 2 is the exponent.

1165.7 = 1.1657 × 10!

0.0004728 = 4.728 × 10$&

Note how the decimal point “floats”!

④ -O

Eg -O

Floating-point numbers
A floating-point number can represent numbers of different order of
magnitude (very large and very small) with the same number of fixed
digits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2$
3 is the significand, normally a fractional value in the range [1.0,2.0)

2 is the exponent

= =

-

→ ME [L , U] ¥4,4]

Floating-point numbers

Numerical Form:

! = ±$ × 2+ = ±',. '-'.'/…'0× 2+

!! ∈ 0,1
Exponent range: * ∈ ,,.
Precision: p = 0 + 1

Fractional part of significand
(* digits)

(
leadingbitfractional
0-0=0

000

Video 2: Normalized floating point
representation

Converting floating points

Convert (39.6875)"! = 100111.1011 # into floating point
representation

1. 001111011×25

0.1001111011×26

Normalized floating-point numbers
Normalized floating point numbers are expressed as

! = ± 1. '-'.'/…'0× 2+ = ± 1. 3 × 2+

where " is the fractional part of the significand, # is the exponent and
$! ∈ 0,1 .

✓
leading bit

y

✓
M€1403

0 I

5bits ✓Aoebibzb3b4
→ p - 5

\④b,bzb3b4
"t "hidden"↳bit¥7

• Exponent range:

• Precision:

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

Normalized floating-point numbers

% = ± (× 2&= ± 1. #"#!#$…#'× 2& = ± 1. - × 2&OD o

mEE4€
p e nt I

1-OO.is#x2=/2I→exponent

1. sissyish x
I = ftp.z-l#JYfa0Tgeeht- precision

Normalized floating point number scale

0
+∞−∞

p - htt I .fx2m ME [40]

flow T
overflowover p

"

f under

.tl#ro?g0.Itia...i
,

ht
l l

- 2
'

2
. It'll.it)
- -

gap ? gap ?

Floating-point numbers: Simple example
A ”toy” number system can be represented as * = ±1. %"%#×2)
for + ∈ [−4,4] and '' ∈ {0,1}.

O
w

- n=2
-

M=O m = I -
. . M -

- 2 m -
-3 m - 4

1. 00×20=1 1.00×2
'

i : fi:% :3.
I
.

11×20=1.75 I . 11×2
'

m=-3 M = - 4
M = - l M = - 2

Floating-point numbers: Simple example
A ”toy” number system can be represented as * = ±1. %"%#×2)
for + ∈ [−4,4] and '' ∈ {0,1}.
1.00 ! ×2" = 1
1.01 ! ×2" = 1.25
1.10 ! ×2" = 1.5
1.11 ! ×2" = 1.75

1.00 ! ×2#$ = 0.5
1.01 ! ×2#$ = 0.625
1.10 ! ×2#$ = 0.75
1.11 ! ×2#$ = 0.875

1.00 ! ×2$ = 2
1.01 ! ×2$ = 2.5
1.10 ! ×2$ = 3.0
1.11 ! ×2$ = 3.5

1.00 ! ×2! = 4.0
1.01 ! ×2! = 5.0
1.10 ! ×2! = 6.0
1.11 ! ×2! = 7.0

1.00 ! ×2% = 8.0
1.01 ! ×2% = 10.0
1.10 ! ×2% = 12.0
1.11 ! ×2% = 14.0

1.00 ! ×2& = 16.0
1.01 ! ×2& = 20.0
1.10 ! ×2& = 24.0
1.11 ! ×2& = 28.0

1.00 ! ×2#! = 0.25
1.01 ! ×2#! = 0.3125
1.10 ! ×2#! = 0.375
1.11 ! ×2#! = 0.4375

1.00 ! ×2#% = 0.125
1.01 ! ×2#% = 0.15625
1.10 ! ×2#% = 0.1875
1.11 ! ×2#% = 0.21875

1.00 ! ×2#& = 0.0625
1.01 ! ×2#& = 0.078125
1.10 ! ×2#& = 0.09375
1.11 ! ×2#& = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we
will show only the positive numbers in this example.

"

}2.0 } 4.0
① } 0.125
° foot's

* = ±1. %"%#×2) for + ∈ [−4,4] and '' ∈ {0,1}

• Smallest normalized positive number:

• Largest normalized positive number:

¥
2-4=0.0625

zut ' (I - 2- P) = 28
0=4

p = htt =3

4 = ±1. '"'%×2(for + ∈ [−4,4] and '' ∈ {0,1}

Machine epsilon
• Machine epsilon (1%): is defined as the distance (gap) between 1 and the

next larger floating point number.

0

Em = 1.25 - l . = 0.25

in general : x # i.
f in , IEm=2T↳

(1) co = I
.

0000 - . .

00×20
-

① I . 000 - . . . 001 x
I

T.F.co#I-2-nx2o=2-n

Range of integer numbers

4 = ±1. '"'%×2(for + ∈ [−4,4] and '' ∈ {0,1}

Suppose you have this following normalized floating point representation:

What is the range of integer numbers that you can represent exactly?-48¥?:O: 'o=②
.

c. oooh.

(1112=1.10×2
'

=3
(1001)z=- (g) no

=
1.01×23=10

÷:÷÷÷÷÷÷¥÷⇒.

