Video 1: Intro to Floating point

(Unsigned) Fixed-point representation

The numbers are stored with a fixed number of bits for the integer part and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the integer part and 3 bits store the fractional part:

Smallest number: $(00000.001)_{2}=(0.125)_{10}$
Largest number: $(11111.111)_{2}=(31.875)_{10}$

(Unsigned) Fixed-point representation

Suppose we have 64 bits to store a real number, where 32 bits store the integer part and 32 bits store the fractional part:

$$
\left(a_{31} \ldots a_{2} a_{1} a_{0} \cdot b_{1}^{2^{0}} b_{2}^{2^{-1}} b_{3}^{2^{-2}} \ldots b_{32}^{2^{-32}}\right)_{2}^{31}=\sum_{k=0}^{32} a_{k} 2^{k}+\sum_{k=1}^{32} b_{k} 2^{-k}
$$

$$
=a_{31} \times 2^{31}+a_{30} \times 2^{30}+\cdots+a_{0} \times 2^{0}+b_{1} \times 2^{-1}+b_{2} \times 2^{2}+\cdots+b_{32} \times 2^{-32}
$$

Smallest number: $\underbrace{0000 \ldots 0}_{32} \cdot \underbrace{000 \ldots 011 ;}_{32}=2^{-32} \cong 10^{-9}$
Largest number: $(111 \ldots 1.11 \ldots 1)_{2} \cong 10^{9}$

Fixed-point representation

(Unsigned) Fixed-point representation

Range: difference between the largest and smallest numbers possible. More bits for the integer part \longrightarrow increase range

Precision: smallest possible difference between any two numbers More bits for the fractional part \longrightarrow increase precision

$$
\left(a_{2} a_{1} a_{0} \cdot b_{1} b_{2} b_{3}\right)_{2} \quad \text { OR } \quad\left(a_{1} a_{0} \cdot b_{1} b_{2} b_{3} b_{4}\right)_{2}
$$

Wherever we put the binary point, there is a trade-off between the amount of range and precision. It can be hard to decide how much you need of each!

Fix: Let the binary point "float"

Scientific Notation

In scientific notation, a number can be expressed in the form

$$
x= \pm r \times 10^{m}
$$

where r is a coefficient in the range $1 \leq r<10$ and m is the exponent.

Note how the decimal point "floats"!

Floating-point numbers

A floating-point number can represent numbers of different order of magnitude (very large and very small) with the same number of fixed digits.

In general, in the binary system, a floating number can be expressed as

$$
x= \pm \underline{\underline{x}} \times \underline{2 m}
$$

q is the significand, normally a fractional value in the range $[1.0,2.0$)
m is the exponent $\longrightarrow m \in[L, U] \quad m \in[-4,4]$

Floating-point numbers

Numerical Form:

$$
x= \pm q \times 2^{m}= \pm \underbrace{b_{0}} \underbrace{b_{1} b_{2} b_{3} \ldots b_{n}} \times \frac{m}{2}
$$

Fractional part of significand (n digits)
$b_{i} \in\{0,1\}$
Exponent range: $m \in[L, U]$
Precision: $\mathrm{p}=n+1$

Video 2: Normalized floating point representation

Converting floating points

Convert $(39.6875)_{10}=(100111.1011)_{2}$ into floating point representation
1.001111011×2^{5}
$0.1001111011 \times 2^{6}$

Normalized floating-point numbers

leading bit Normalized floating point numbers are expressed as

$$
x= \pm 1 \underbrace{b_{1} b_{2} b_{3} \ldots b_{n}} \times(2 m)= \pm 1 .(f) \times 2^{m}
$$

where f is the fractional part of the significant, m is the exponent and $b_{i} \in\{0,1\}$.
5 bits

$$
\underbrace{a_{0} b_{1} b_{2} b_{3} b_{4}} \longrightarrow p=5
$$

Normalized floating-point numbers

$$
x= \pm q \times 2^{m}= \pm 1 \omega_{1} b_{2} b_{3} \ldots b_{n} \times 2^{m}= \pm 1 . f \times 2^{m}
$$

- Exponent range: $m \in[L, \cup]$
- Precision: $p=n+1$
- Smallest positive normalized $\mathbf{F P}$ number:

$$
1 . \underbrace{00 \ldots 00}_{n} \times 2^{L}=2^{L} \longrightarrow \text { exponent }
$$

- Largest positive normalized $F P$ number: range. + precision

Normalized floating point number scale

Floating-point numbers: Simple example
A "toy" number system can be represented as $x= \pm 1 . b_{1} b_{2} \times 2 m$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

$$
\begin{array}{l|lll}
& m=1 & \cdots m=2 \quad m=3 \quad m=4 \\
1.00 \times 2^{0}=1 & 1.00 \times 2^{1} & & \\
1.01 \times 2^{0}=1.25 & 1.01 \times 2^{1} & & \\
1.10 \times 2^{0}=1.5 & 1.10 \times 2^{1} & & \\
1.11 \times 2^{0}=1.75 & 1.11 \times 2^{1} & &
\end{array}
$$

$$
m=-1 \quad m=-2 \quad m=-3 \quad m=-4
$$

Floating-point numbers: Simple example

A "toy" number system can be represented as $x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$.

$(1.00)_{2} \times 2^{-2}=0.25$
$(1.01)_{2} \times 2^{-2}=0.3125$
$(1.00)_{2} \times 2^{-3}=0.125$
$\left.\begin{array}{l}\left.(1.00)_{2} \times 2^{-4}\right)=0.0625 \\ (1.01)_{2} \times 2^{-4}=0.078125\end{array}\right\} 0.015$
$(1.10)_{2} \times 2^{-2}=0.375 \quad(1.10)_{2} \times 2^{-3}=0.1875$
$(1.10)_{2} \times 2^{-4}=0.09375$
$(1.11)_{2} \times 2^{-2}=0.4375$
$(1.11)_{2} \times 2^{-3}=0.21875$
$(1.11)_{2} \times 2^{-4}=0.109375$
Same steps are performed to obtain the negative numbers. For simplicity, we will show only the positive numbers in this example.
$x= \pm 1 . b_{1} b_{2} \times 2^{m}$ for $m \in[-4,4]$ and $b_{i} \in\{0,1\}$

- Smallermalized positive number:

$$
2^{L}=2^{-4}=0.0625
$$

- Largest normalized positive number:

$$
\begin{aligned}
& 2^{u+1}\left(1-2^{-p}\right)=28 \\
& U=4 \\
& p=n+1=3
\end{aligned}
$$

Machine epsilon

- Machine epsilon $\left(\epsilon_{m}\right)$: is defined as the distance (gap) between 1 and the next larger floating point number.

$$
x= \pm 1 . b_{1} b_{2} \times 2^{m} \text { for } m \in[-4,4] \text { and } b_{i} \in\{0,1\}
$$

$$
2
$$

$$
\begin{array}{lllllllll}
0.00 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00
\end{array}
$$

$$
\epsilon_{m}=1.25-1 .=0.25
$$

in general: $x= \pm 1 . f \quad \frac{(n)}{=}$

$(1)_{10}=1 . \underbrace{0000 \ldots 00} \times 2^{0}$
$\frac{-1.000 \ldots 001 \times 2^{0}}{0.000 \ldots 001 \times 2^{0}}=2^{-n} \times 2^{0}=2^{-n}$

Range of integer numbers

Suppose you have this following normalized floating point representation:

$$
x= \pm 1 . b_{1} b_{2} \times 2^{m} \text { for } m \in[-4,4] \text { and } b_{i} \in\{0,1\}
$$

What is the range of integer numbers that

$$
\left.\begin{array}{l}
1.00 \times 2^{0}=1 \\
(10)_{2}=1.00 \times 2^{1}=(2)_{10} \\
(11)_{2}=1.10 \times 2^{1}=(3)_{10} \\
(100)_{2}=1.00 \times 2^{2}=(4)_{10} \\
(101)_{2}=1.01 \times 2^{2}=(5)_{10} \\
(110)_{2}=1.10 \times 2^{2}=(6)_{10} \\
(111)_{2}=1.11 \times 2^{2}=7
\end{array}\right\}
$$

$$
\begin{aligned}
(1000)_{2} & =1.00 \times 2^{(3)}=(8)_{10} \\
(1001)_{2} & =\underbrace{(9)_{10}} \\
& =1.01 \times 2^{3}=10
\end{aligned}
$$

