Video 1: Intro to Floating point
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(Unsigned) Fixed-point representation

The numbers are stored with a fixed number of bits for the integer part

and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the

integer part and 3 bits store the fractional part:
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(Unsigned) Fixed-point representation

Suppose we have 64 bits to store a real number, where 32 bits store the

integer part and 32 bits store the fractional part:
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Fixed-point representation

How can we decide where to locate@e ‘b‘h‘iﬁ point?
More bits on the integer part?

More bits on the fractional part?
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(Unsigned) Fixed-point representation

Range: difference between the largest and smallest numbers possible.

More bits for the integer part — increase range

Precision: smallest possible difference between any two numbers

More bits for the fractional part — increase precision
(ayaiaq.bybyb3), OR (ayaq.bybyb3by),

Wherever we put the binary point, there is a trade-off between the
amount of range and precision. It can be hard to decide how much
you need of each!

Fix: Let the binary point “float”
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Scientific Notation

In scientific notation, a number can be expressed in the form
x=+rx10™

where 7 is a coefficient in the range 1 <r<10 and mis the exponent.

1‘1)6,5.7 — 1.1657
0,0004728 = 4.728 x@

Note how the decimal point “floats”!
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Floating-point numbers

A ﬂoating—point number can represent numbers of different order of

magnitude (very large and very small) with the same number of fixed
digits.
In general, in the binary system, a floating number can be expressed as

x=iq><2/@

q is the significand, normally a fractional value in the range 11.0,2.0)

m is the exponent ——> Y € [L,U] me ["'AHAC]
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Numerical Form:

x =1qg x2M=+

b; € {0,1}

Exponent

Floating-point numbers

[6 Oﬂk\‘ﬂ bf%

Fractional part of significand
(n digits)

m. € [L, U]

Precision:\p =(n

b =ln
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Video 2: Normalized floating point

representation
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Converting floating points

Convert (39.6875)19 = (100111.1011); into floating point

representation
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Normalized floating-point numbers
leadivg bt me[L, L]

Normalized floating oint numbers are expressed as
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where f is the fractional part of the significand, m is the exponent and
b; € {0,1}.
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Normalized floating-point numbers

* Precision: F = Nx\

* Smallest positive normalized FP number:
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Normalized floating point number scale
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Floating-point numbers: Simple example

A ’toy” number system can be represented as X = +1. b b, XZ@

for m € [—4,4] and b; € {0,1}.
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Floating-point numbers: Simple example

A ’toy” number system can be represented as X = +1. b b, x2™M
for m € [—4,4] and b; € {0,1}.
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(1.00), x2° = 11\ (1.00), x2! =2 (1.00), x2% = 4.
(1.01), x2° = 1.25|  [(1.01), x2! = 2.5 (1.01), x22 = 5. 1.0
(1.10), x2° = 1.5 (1.10), x2' = 3.0 (1.10), x22 = 6.0
(1.11), x2° = 1.75\  \(1.11), x2! = 3.5 (1.11), x2%2 = 7.0
- 0.5 0.9
(1.00), x23 = 8.0 (1.00), x2* = 16.0 (1.00), x27Y=10.5
(101); x2% =10.0p90 (1.0, x2* = 20.0y 4.0 (1.01), X2~ = 0.625 0.125
(1.10), x2° = 12.0 (1.10), x2* = 24.0 (1.10), x2~1 = 0.75
(1.11), x23 = 14.0) ((1.11), x2* = 28.0 (1.11), x2~1 = 0.875
(1.00); x272 = 0.25 (1.00), x273 = 0.125 (1.00), @= 0.0625
(1.01); X272 = 03125  (1.01), X273 = 0.15625  (1.01), x2~* = 0.078125 (),Dlg
(1.10), X272 = 0375  (1.10), x273 = 0.1875 (1.10), x27* =0.09375 | {25
(1.11), X272 = 04375 (1.11), x273 = 0.21875  (1.11), x27* = 0.109375
Same steps are performed to obtain the negative numbers. For simplicity, we
Kwill show only the positive numbers in this example. /
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x = +1 b1b2><2
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Machine epsilon

* Machine epsilon (€;): is defined as the distance (gap) between 1 and the

next larger ﬂoating point number.
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Range of integer numbers

Suppose you have this following normalized ﬂoating point representation:

+1.b1b,X2™ for m € [—4,4] and b; € {0,1}
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What is the range of integer numbers that you can represe
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