
Machine numbers: how floating point 
numbers are stored?



Floating-point number representation
What do we need to store when representing floating point 
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were  used in computers, 
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard 
representation for floating-point number: IEEE (Institute of Electrical and 
Electronics Engineers) 754 Standard.



Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:

! =



Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):
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! =
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Special Values:

! =
1) Zero:

2) Infinity: +∞ (% = 0) and −∞ % = 1

! =
3) NaN: (results from operations with undefined results)

! =

! = (−1)+ 1. - × 20 = + 1 -

s =L → negative
Seo ⇒ positive
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IEEE-754 Single Precision (32-bit)
! = (−1)' 1. ) × 2,

sign 
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exponent
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significand
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IEEE-754 Single Precision (32-bit)

! = (−1)' 1. ) × 2,

67.125 = 1000011.001 1 = 1.000011001 1×22

Example: Represent the number ! = −67.125 using IEEE Single-
Precision Standard
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• Machine epsilon (!"): is defined as the distance (gap) between 1 
and the next largest floating point number. 

# = (−1)) 1. + × 2. = / = 0 + 127

IEEE-754 Single Precision (32-bit)
) 3 +

• Smallest positive normalized FP number:

• Largest positive normalized FP number: 
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IEEE-754 Double Precision (64-bit)
! = (−1)' 1. ) × 2,

sign 
(1-bit)

exponent
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significand
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• Machine epsilon (!"): is defined as the distance (gap) between 1 
and the next largest floating point number. 

# = (−1)) 1. + × 2. = / = 0 + 1023

IEEE-754 Double Precision (64-bit)
) 4 +

• Smallest positive normalized FP number: 

• Largest positive normalized FP number: 
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Subnormal (or denormalized) numbers
• Noticeable gap around zero, present in any floating system, due to 

normalization
• Relax the requirement of normalization, and allow the leading digit to be zero, 

only when the exponent is at its minimum (! = #)
• Computations with subnormal numbers are often slow.

Representation in memory (another special case):

Numerical value:

$ =
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Subnormal (or denormalized) numbers

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! = 00000000 $ = 0

! = 00000000000 $ = 0
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Subnormal (or denormalized) numbers
double preston
number scale
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IEEE-754 Double Precision 



Stored binary 
exponent (")

Significand 
fraction ($)

value

00000000 0000…0000 zero
00000000 %&' $ ≠ 0 (−1), 0. . × 21234
00000001 %&' $ (−1), 1. . × 21234

11111110 %&' $ (−1), 1. . × 2235
11111111 %&' $ ≠ 0 NaN
11111111 0000…0000 infinity

6 = (−1), 1. . × 28 = 9 = " − 127, ; .

Summary for Single Precision 

⋮ ⋮ ⋮



What is the equivalent decimal 
number?
0 00000000 00000000000000000000000

1 11111111 00000000000000000000000

0 11111111 11111111110000111111111

0 00000000 11110000000000000000000

0 01111111 00000000000000000000000



Iclicker question
A number system can be represented as ! = ±1. &'&(&)×2,
for - ∈ [−5,5] and &4 ∈ {0,1}. 

1) What is the smallest positive normalized FP number:
a) 0.0625    b)  0.09375      c) 0.03125    d) 0.046875    e) 0.125

2) What is the largest positive normalized FP number:
a) 28     b)  60      c) 56     d) 32

3) How many additional numbers (positive and negative) can be 
represented when using subnormal representation?
a) 7     b)  14     c) 3     d) 6     e) 16

4) What is the smallest positive subnormal number? 
a) 0.00390625   b) 0.00195313   c) 0.03125   d) 0.0136719

5) Determine machine epsilon
a) 0.0625     b) 0.00390625 c) 0.0117188 d) 0.125

p --ntl=4
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A number system can be represented as ! = ±1. &'&(&)&*×2-
for . ∈ [−6,6] and &5 ∈ {0,1}. 

1) Let’s say you want to represent the decimal number 19.625 using the 
binary number system above.  Can you represent this number exactly? 

2) What is the range of integer numbers that you can represent exactly using 
this binary system?

he 4 p -

- 5

(19.62520--1100%110172=1.0011101×24
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integrant
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Rounding errors 



Example
Show demo: “Waiting for 1”.
Determine the double-precision machine representation for 0.1

0.1 = 0.000110011 0011… & = 1.100110011… &×2)*

D TojoIF
M = -4 → c = Mt 1023 - c €1019 ) to

£ &÷÷ -



Machine floating point number
• Not all real numbers can be exactly represented as a machine floating-point 

number.
• Consider a real number in the normalized floating-point form:

! = ±1. &'&(&) …&+ …× 2.
• The real number ! will be approximated by either !/ or !0, the nearest two 

machine floating point numbers.

!!/ !00 +∞
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!!" !#0 +∞

!" = 1. *+*,*- …*/× 22
! = 1. *+*,*- …*/ …× 22Exact number:

!# = 1. *+*,*- …*/× 22+ 0.000…01× 22
32

Gap between !# and !": !# − !" = 32 × 22

Examples for single precision:
!# and !" of the form 5 × 2"+6
!# and !" of the form 5 × 27:
!# and !" of the form 5 × 2,6:
!# and !" of the form 5 × 296:

The interval between successive floating point numbers is not uniform: the interval is smaller as the 
magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

* ①2-23×2-10=2-33 ~
10-10

→ 24×2-23 ~
10-6

→ 220×2-23 ~
O . 125

→ 260+2-23=237 n W
"



Gap between two successive machine floating point numbers

A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 ( ×27 = 1
1.01 ( ×27 = 1.25
1.10 ( ×27 = 1.5
1.11 ( ×27 = 1.75

1.00 ( ×2:' = 0.5
1.01 ( ×2:' = 0.625
1.10 ( ×2:' = 0.75
1.11 ( ×2:' = 0.875

1.00 ( ×2' = 2
1.01 ( ×2' = 2.5
1.10 ( ×2' = 3.0
1.11 ( ×2' = 3.5

1.00 ( ×2( = 4.0
1.01 ( ×2( = 5.0
1.10 ( ×2( = 6.0
1.11 ( ×2( = 7.0

1.00 ( ×2> = 8.0
1.01 ( ×2> = 10.0
1.10 ( ×2> = 12.0
1.11 ( ×2> = 14.0

1.00 ( ×2? = 16.0
1.01 ( ×2? = 20.0
1.10 ( ×2? = 24.0
1.11 ( ×2? = 28.0

1.00 ( ×2:( = 0.25
1.01 ( ×2:( = 0.3125
1.10 ( ×2:( = 0.375
1.11 ( ×2:( = 0.4375

1.00 ( ×2:> = 0.125
1.01 ( ×2:> = 0.15625
1.10 ( ×2:> = 0.1875
1.11 ( ×2:> = 0.21875

1.00 ( ×2:? = 0.0625
1.01 ( ×2:? = 0.078125
1.10 ( ×2:? = 0.09375
1.11 ( ×2:? = 0.109375
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