
Machine numbers: how floating point
numbers are stored?

Floating-point number representation
What do we need to store when representing floating point
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were used in computers,
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard
representation for floating-point number: IEEE (Institute of Electrical and
Electronics Engineers) 754 Standard.

Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:

! =

Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! =

! =

X = II. f +2M

MEET ,
U]

8 bits 23 bits
↳ signed

I c- Mt shift fibitluunsigned

+ f
- cent Shift

Ibi 't 11 bits 52 bits

Special Values:

! =
1) Zero:

2) Infinity: +∞ (% = 0) and −∞ % = 1

! =
3) NaN: (results from operations with undefined results)

! =

! = (−1)+ 1. - × 20 = + 1 -

s =L → negative
Seo ⇒ positive

8/11 23 152

I 00 .

. . . .00000 . - -

. 000

all zeros all zeros

8111
I 111 . - - 11 000 - -

- - 000

all ones all zeros

I Mi .

- - 11 anything but all ceros

all ones

all zeros in a but anything else in f

IEEE-754 Single Precision (32-bit)
! = (−1)' 1.) × 2,

sign
(1-bit)

exponent
(8-bit)

significand
(23-bit)

- . = / + 127 2

C = COO .
.

. Ok →
reserved - C = Co) , o

C =
C It

. -
- 1) z

→
Nah or is C = C 255) no

I f c f 254 → I £Mt 127 f 254

- 126 f ME 127

range of
exponent → m E [- 126

,
127]

IEEE-754 Single Precision (32-bit)

! = (−1)' 1.) × 2,

67.125 = 1000011.001 1 = 1.000011001 1×22

Example: Represent the number ! = −67.125 using IEEE Single-
Precision Standard

=

=

m
-

8 bits

, -236¥Dt2
,

.M = 6 → C = Mt 127=433) I

• Machine epsilon (!"): is defined as the distance (gap) between 1
and the next largest floating point number.

= (−1)) 1. + × 2. = / = 0 + 127

IEEE-754 Single Precision (32-bit)
) 3 +

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

N = 23 -7 p=24

I
ME [- 126,127]

O

I. 000 - . . -
00×20 -

23 -7

-23¥ Em = 2 a I. 2×10

l.oooo-e.no/x2#/Em=2-hJ
0.000 - - -

. 01×20
2-

' 2-22-3
-

-
. . 2-23

- 126
-38

UFL
.

- 1.00
.

.

 -
0×2 UFL

.

.

2h Flo

OFL=2°t' (I -

2-9=2127+41-2-24

)e1O38

IEEE-754 Double Precision (64-bit)
! = (−1)' 1.) × 2,

sign
(1-bit)

exponent
(11-bit)

significand
(52-bit)

- . = / + 1023 3

wie
C =

C 000
. . - - 00)

,

= (O) co
→ reserved for

zero

c= (I I I - - -

.1172=1204710→ NaN and D

I f C f
2046

→ I I Mt 1023 £2046

ME f- to22,1023] /-lO22CMsl023€

• Machine epsilon (!"): is defined as the distance (gap) between 1
and the next largest floating point number.

= (−1)) 1. + × 2. = / = 0 + 1023

IEEE-754 Double Precision (64-bit)
) 4 +

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

MEE - 1022,1023] M=52 → p = 53

Em =
I

"

→
Em =

2-52=2.2×10-16

→¥0,16308 ¥308 do ¥-303 10308

UFL = 2h → UFL +2-1022=2.2×10-308

OFL = 241/1-2-9=2102411-2-53) ex low
8

Can
.

we represent # smaller
trace UEL

M

N = I
.

f x 2

de normalized / subnormal

Let's make

C = I 00
-

-
.

00)
z

all zeros

⑤anything but zeros(used to
" indicate

"
that exponent

is m =L C and NIT to evaluate m)

Subnormal (or denormalized) numbers
• Noticeable gap around zero, present in any floating system, due to

normalization
• Relax the requirement of normalization, and allow the leading digit to be zero,

only when the exponent is at its minimum (! = #)
• Computations with subnormal numbers are often slow.

Representation in memory (another special case):

Numerical value:

$ =
all zeros anything but

000 - -
. 00 f zeros

s
-811k,

s
,

23/52
←

d

X=IO.f×2L
M€426,1277 single

I

ME -1-1022,10231 double

Subnormal (or denormalized) numbers

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! = 00000000 $ = 0

! = 00000000000 $ = 0

(
2-

"

.
sina.k.am : co. ¥¥.

. -00k¥
.

"

:3?!I:*

IemIYrstmei@o.g.oo.
. -

- oo!?i.io : i
"

i:: .

e 4.9 x 10

Subnormal (or denormalized) numbers
double preston
number scale

A I I I d I
-308 a 308

-103
"

- to

*! !4¥ ,

10308

✓
-

I
. EX 2-

' "

→ UFL p -

- 24
zz bits

-126

O.mn -
.

.
.

1172 → p - 23
Example

o.to?FtsomxEI--s/suisinfeFnotTisniIantbits/

precision

Loss of precision
! !

IEEE-754 Double Precision

Stored binary
exponent (")

Significand
fraction ($)

value

00000000 0000…0000 zero
00000000 %&' $ ≠ 0 (−1), 0. . × 21234
00000001 %&' $ (−1), 1. . × 21234

11111110 %&' $ (−1), 1. . × 2235
11111111 %&' $ ≠ 0 NaN
11111111 0000…0000 infinity

6 = (−1), 1. . × 28 = 9 = " − 127, ; .

Summary for Single Precision

⋮ ⋮ ⋮

What is the equivalent decimal
number?
0 00000000 00000000000000000000000

1 11111111 00000000000000000000000

0 11111111 11111111110000111111111

0 00000000 11110000000000000000000

0 01111111 00000000000000000000000

Iclicker question
A number system can be represented as ! = ±1. &'&(&)×2,
for - ∈ [−5,5] and &4 ∈ {0,1}.

1) What is the smallest positive normalized FP number:
a) 0.0625 b) 0.09375 c) 0.03125 d) 0.046875 e) 0.125

2) What is the largest positive normalized FP number:
a) 28 b) 60 c) 56 d) 32

3) How many additional numbers (positive and negative) can be
represented when using subnormal representation?
a) 7 b) 14 c) 3 d) 6 e) 16

4) What is the smallest positive subnormal number?
a) 0.00390625 b) 0.00195313 c) 0.03125 d) 0.0136719

5) Determine machine epsilon
a) 0.0625 b) 0.00390625 c) 0.0117188 d) 0.125

p --ntl=4

1. 000×2-5=2-5

D

D 1.111×25 or It'll

-2-17=241-2-9

D Q00h0.1010

. 010

a 011

Eme 2-72-3 . lolDiii
:

A number system can be represented as ! = ±1. &'&(&)&*×2-
for . ∈ [−6,6] and &5 ∈ {0,1}.

1) Let’s say you want to represent the decimal number 19.625 using the
binary number system above. Can you represent this number exactly?

2) What is the range of integer numbers that you can represent exactly using
this binary system?

he 4 p -

- 5

(19.62520--1100%110172=1.0011101×24

1.0011×242
integrant

double precision → 253

4994
d) co -412=1.0000×20 (
1111152=(31/10--1.1111×2412), o

- (D) 2=1-0000×2
"

2) go
=L

.

0000×25

(3) w =L
, z=

I
-

1000×2
'

I
.

0001×25--34
(151,0--1%44%0)<=1.1110×23 cannot represent @3% ! !

Rounding errors

Example
Show demo: “Waiting for 1”.
Determine the double-precision machine representation for 0.1

0.1 = 0.000110011 0011… & = 1.100110011… &×2)*

D TojoIF
M = -4 → c = Mt 1023 - c €1019) to

£ &÷÷ -

Machine floating point number
• Not all real numbers can be exactly represented as a machine floating-point

number.
• Consider a real number in the normalized floating-point form:

! = ±1. &'&(&) …&+ …× 2.
• The real number ! will be approximated by either !/ or !0, the nearest two

machine floating point numbers.

!!/ !00 +∞

• o

K
X

-

= 1. b
, bzbg . - bn x

2M
h

*
= " Io÷oU m

x 2

!!" !#0 +∞

!" = 1. *+*,*- …*/× 22
! = 1. *+*,*- …*/ …× 22Exact number:

!# = 1. *+*,*- …*/× 22+ 0.000…01× 22
32

Gap between !# and !": !# − !" = 32 × 22

Examples for single precision:
!# and !" of the form 5 × 2"+6
!# and !" of the form 5 × 27:
!# and !" of the form 5 × 2,6:
!# and !" of the form 5 × 296:

The interval between successive floating point numbers is not uniform: the interval is smaller as the
magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

* ①2-23×2-10=2-33 ~
10-10

→ 24×2-23 ~
10-6

→ 220×2-23 ~
O . 125

→ 260+2-23=237 n W
"

Gap between two successive machine floating point numbers

A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

	Lecture5-Sept10-L1-p1
	Lecture5-Sept10-L1-p2

