CA3_Asset_Pricing_instructor

October 1, 2019

In [1]: import numpy as np
import matplotlib.pyplot as plt
Jmatplotlib inline

1 Asset Pricing

Suppose that we are interested in investing in a specific stock. We may want to try and predict
what the future price might be with some probability in order for us to determine whether or not
we should invest.

The simplest way to model the movement of the price of an asset in a market with no moving
forces is to assume that the price changes with some random magnitude and direction (the random
walk theory)

We will implement this "random walk" by first simulating the roll of a dice.

1.0.1 Write a function called dice that will roll an integer number from 1 to 6.

In [2]: #clear
dice = lambda: np.random.randint(1,7)

The function dice will now tell us by how much the price is changing after one time step.
Now, we need to know whether the price is increasing or decreasing.
How can we determine whether to increase or decrease the price? By doing a coin flip!

1.0.2 Write a function called f1ip that will randomly choose between -1 (decreasing price) or
+1 (increasing price).

Hint: Using numpy . random. choice might be helpful here.

In [3]: #clear
flip = lambda: np.random.choice([1, -1])

By combining these two functions, we are able to obtain the price change at a given time.
Here we will assume that a coin flip combined with a dice roll gives the price change for a
given day.

1.0.3 1) Numerical experiment to simulate the asset price variation for a period of 10 days

Create the numpy array simulation10 to store the random asset price variation for each day using
the functions dice and flip

In [4]: N = 10 # number of days

In [5]: #clear
perform 10 steps of our simulation
simulationlO = np.array([flip() * dice() for i in range(N)])

Use plt.hist to plot the histogram of the distribution of asset price variation (i.e. your
simulationl0 array). We basically want to see how many times our simulation gives us -1, or
-2, and so on...

In [6]: plt.hist(simulationl0, 13)
plt.title('Simulation of 10 Dice Rolls')
plt.xlabel('Result of Dice Roll')
plt.ylabel('Number of Occurrences')

OQut[6]: Text(0, 0.5, 'Number of Occurrences')

Simulation of 10 Dice Rolls

2.00 -
175 -
150 -
125 -
1.00 -
D.75
0.50 -
0.25 -
0.00
-4 -2 D 2 4 B

Reszult of Dice Roll

Mumber of Occurrences

What would you expect the histogram to look like if we repeated the numerical experiment
above for a significantly larger amount of time steps (more days)?

Can you tell what type of distribution we are sampling from in this simulation?

Try to reflect about the above questions before repeating the numerical experiment for N =
10000 days

In [7]: N = 10000

In [8]: #clear
simulation = np.array([flip() * dice() for i in range(N)])
plt.hist(simulation,13)
plt.title('Simulation of N Dice Rolls')
plt.xlabel('Result of Dice Roll')
plt.ylabel('Number of Occurrences')

OQut[8]: Text(0, 0.5, 'Number of Occurrences')

Simulation of N Dice Rolls

800 1

600

400 4

NMumber of Occurrences

200 1

-5 —4 -2 1] 2 4 &
Result of Dice Raoll

The above numerical experiment simulates how much the price changes each day, but does
NOT calculate the actual asset price after each day.

How can we use the above results to find the asset price after each day?

We can accomplish this by performing a prefix sum. If we have an array v, a prefix sum can be
written as

where we repeat this for every element in our array.
Fortunately for us, python has a built-in function that performs a prefix sum called cumsum.

1.0.4 2) Numerical experiment to determine the asset price for each day over a period of 10
days

Assume the initial price of the stock is 0. Store the cumulative sum in the array price10.

3

In [9]: #clear
pricel0 = simulationlO.cumsum()

Use print (price10) and print (simulation10) to take a look at your results. Do you get the
expected results according to the expression aboce?

In [10]: #clear
print(simulation10)
print(pricel0)

[3 6§-3 5-5 1 3-3 6 -1]
[3 8 510 5 6 9 6 12 11]

Plot your results using plt.plot(pricel0)

In [11]: #plot prices
plt.plot(pricel0)
plt.title('10-day Price Prediction')
plt.xlabel('Day"')
plt.ylabel('Price')

Out[11]: Text(0, 0.5, 'Price')

10-day Price Prediction

12

10 1

Price

Day

Does this plot resemble the short-term movement of the stock market? Let’s repeat the numer-
ical experiment above over a longer period of time

4

1.0.5 3) Numerical experiment to determine the asset price for each day over a period of 1000
days

Assume the initial price of the stock is 0. Store the cumulative sum in the array price and plot
your results using plt.plot

In [12]:

Out[12] :

#clear
N = 1000

run same simulation but now with 100 time steps
simulation = np.array([flip() * dice() for i in range(N)])

price = simulation.cumsum()
plt.plot(price)

plt.title('10000-day Price Prediction')
plt.xlabel('Day')

plt.ylabel('Price')

Text(0, 0.5, 'Price')

10000-day Price Prediction

Price
| I
= P
e] [
i i

|
[y}
=
i

I I
0 200 400 600 800 1000
Day

Observations:

Performing one time step per day may not be enough to fully capture the randomness of the
motion of the market. In practice, these N steps would really represent what the price might be in
some shorter period of time (much less than a whole day).

Furthermore, performing a single numerical experiment will not give us a realistic expectation
of what the price of the stock might be after a certain amount of time since the stock market with
no moving forces consists of random movements.

Run the code snippet above several times (just do shift-enter again and again). What happens
to the asset price after 1000 days?

1.0.6 4) Perform M=10 different numerical experiments, each one with N = 1000 days

For each numerical experiment, determine the array price using N = 1000 days. Make sure to
store all the M=10 arrays price in the 2d array prices_M.
For this sequence of numerical experiments, assume that the initial asset price is p0 = 200

In [13]: N = 1000 # days
M= 10 # number of numerical experiments
pO = 200 # initial asset price

In [14]: #clear

price_ M = []

for i in range(M):
simulation = np.array([flip() * dice() for j in range(N-1)])
simulation = np.insert(simulation,0,p0)
price = simulation.cumsum()
price_M.append(price)

price_M = np.array(price_M).T

Then you can plot your results using:

In [15]: plt.figure()
plt.plot(price_M);
plt.title ('M numerical experiments');
plt.xlabel('Day');
plt.ylabel('Price');

M numencal experiments

500 1

400 4

300 1

Price

200 1

100 1

We now have a more insightful prediction as to what the price of a given stock might be in the
future. Suppose we want to predict the asset price at day 1000. We can just take the last element
of the numpy array price!

Create the variable predicted_prices to store the predicted asset prices for day 1000 for all
the M=10 numerical experiments.

In [16]: #clear
predicted_prices = price_M[-1,:]

Plot the histogram of the predicted price:

In [17]: plt.figure()
plt.hist(predicted_prices);
plt.title('Asset price distribution at day 1000 from M numerical experiments')
plt.xlabel('Asset prices')
plt.ylabel('Number of Occurrences')

Out[17]: Text(0, 0.5, 'Number of Occurrences')

Asset price distribution at day 1000 from M numenical experniments

3.0 1

25 1

20 1

15 1

10 1

0.0 | |
0 100 200 300 400

Asset prices

Mumber of QOccurrences

Go back and change the number of numerical experiments. Set M = 1000 and run again.
Better right?

You can calculate the mean of the distribution to get the “expected value” for the stock on day
1000. What do you get?

In [18]: predicted_prices.mean()
Out[18]: 228.3

There is one problem with our simple model. Our model does not incorporate any information
about our specific stock other than the starting price. In order for us to get a more accurate model,
we need to find a way incorporate the previous price of the stock.

1.1 Black-Scholes Model

We will now model stock price behavior using the Black-Scholes model, which employs a type of
log-normal distribution to represent the growth of the stock price. Conceptually, this representa-
tion consists of two pieces:

1.1.1 1) Growth based on interest rate only

A simplified model based only on the compound interest rate r, would tell us that the stock price
increases by e’ at every time increment, meaning St = Sr_1e’. Extrapolating the compounded
interest growth would imply that

https://en.wikipedia.org/wiki/Black_Scholes_model

ST — SterAt

where

* S; price of the asset at time ¢

St predicted price of the asset at time T
r is the interest rate

At is the time remaining (T — ¢)

Daily price movements based on interest rate only Assume that at the initial time t = 0 the
asset price is SO = 100 and the interest rate is ¥ = 0.05. Calculate the daily price movements
according to the expression above for a period of 252 days (typical number of trading days in a
year). Note that here the unit of ¢ is days. Store your results in the array price_interest_only.
Then plot your results using plt.plot(price_interest_only)

In [19]: #clear
N = 252 # number of days

SO = 100
r = 0.05
deltaT = 1/N

price_interest_only = np.array([S0])
for i in range(N):
St = price_interest_only[-1]
price_interest_only = np.append(price_interest_only, st*np.exp(r*deltaT))

In [20]: plt.plot(price_interest_only)
plt.title('Simulation of Price considering interest rate only')
plt.xlabel('Time')
plt.ylabel('Price')

Out [20]: Text(0, 0.5, 'Price')

Simulation of Price considering interest rate only

105 A1

104 1

103

Price

102 1

101

100 1

] GO 100 150 200 250
Time

1.1.2 2) Add parameter to model volatility of the market

Stock prices evolve over time, with a magnitude dependent on their volatility. The Black Scholes
model treats this evolution in terms of a random walk (a sequence of increments/decrements). To
use the Black-Scholes model we assume:

¢ Some volatility or an annualized standard deviation of stock price. Call this ¢

¢ We have a (risk-free) interest rate called r; and

¢ The price of the asset is geometric Brownian motion, or in other words the log of the random
process is a normal distribution.

which leads to the following expression for the predicted asset price:
Sr = Ste(r—é)AT-HT\/ﬁe
where

¢ ¢ is the volatility, or standard deviation on returns.
* ¢is arandom value sampled from the normal distribution N'(0,1)
Write a function St_GBM that will compute the price of an asset after a period AT

def St_GBM(St, r, sigma, deltat):
ST = ... # Calculate this
return ST

10

https://en.wikipedia.org/wiki/Geometric_Brownian_motion

In [21]: #clear
def St_GBM(St, r, sigma,deltat):
epsilon = deltat#**0.5*sigma*np.random.normal ()
S = St * np.exp((r-sigmax*2/2)*deltat + epsilon)
return S

This model now gives us a more accurate way to predict the future price.

Daily price movements based on interest rate and volatility Assume that at the initial time
t = 0 the asset price is SO = 100, the interest rate is r = 0.05 and volatity is ¢ = 0.1. Calculate the
daily price movements using St_GBM for a period of 252 days (typical number of trading days in
a year). Note that here the unit of ¢ is days. Store your results in the array price. Then plot your
results using p1lt.plot(price)

In [22]: #clear
N = 252 # number of days

S0 = 100

r =0.05

sigma = 0.5 #0.01
deltaT = 1/N

price = np.array([S0])
for i in range(N):
st = price[-1]
price = np.append(price, St_GBM(price[-1],r,sigma,deltaTl))

In [23]: plt.plot(price)
plt.title('Simulation of Price using Black-Scholes Model')

plt.xlabel('Time')
plt.ylabel('Price')

Out[23]: Text(0, 0.5, 'Price')

11

Simulation of Price using Black-5choles Model

tn
=

'_I

=

[}
i

ha
=

=

=

=
i

=
=

I I
0 50 100 150 200 250

In [24]: # Plot both models in the same figure
plt.plot(price_interest_only)
plt.plot(price,'r"')
plt.xlabel('Time"')
plt.ylabel('Price')

Out [24]: Text(0, 0.5, 'Price')

12

160

150 1

140 4

130

Price

120 -
110 -
100 U

D 50 100 150 200 50
Time

Unfortunately volatility is usually not this small.... Run the code snippet above to predict the
price movement for a volatity c = 0.5 So great — we have managed to successfully simulate a
year’s worth of future daily price data. Unfortunately this doesn’t not provide insight into risk and
return characteristics of the stock as we only have one randomly generated path. The likelyhood
of the actual price evolving exactly as described in the above charts is pretty much zero. We should
modify the aboce code to run multiple numerical experiments (or simulations).

1.1.3 Perform M=10 different numerical experiments, each one with N = 252 days

For each numerical experiment, determine the array price using N = 252 days. Make sure to store
all the M=10 arrays price in the 2d array prices_M.
For this sequence of numerical experiments, assume that the initial asset price is S0 = 100.

In [25]: N = 252 # days
M = 10000 # number of numerical experiments
S0 = 100 # initial asset price
r =0.05
sigma = 0.5

In [26]: #clear
CODE SNIPPET A
price_M = []
for j in range(M):
price = [S0]

13

for i in range(N):
price.append(St_GBM(price[-1],r,sigma,deltaT))
price_M.append(price)

price_M = np.array(price_M).T

Then plot the result using:

In [27]: plt
plt
plt
plt
plt

.figure()

.plot(price_M);

.title ('M numerical experiments of Black-Scholes Model');
.x1label('Day');

.ylabel('Price');

M numerical experiments of Black-5choles Model

The spread of final prices is quite large! Let’s take a further look at this spread. Create the
variable predicted_prices to store the predicted asset prices for day 252 (last day) for all the
M=10 numerical experiments.

In [28]: #clear
predicted_prices = price_M[-1,:]

Plot the histogram of the predicted prices:

In [29]: plt
plt
plt
plt
plt

.figure()

.hist(predicted_prices,30);

.title('Predicted asset price distribution at day 252 from M numerical experiments')
.xlabel('Asset prices')

.ylabel ('Number of Occurrences')

14

Out[29]: Text(0, 0.5, 'Number of Occurrences')

Predicted asset price distribution at day 252 from M numerical experiments

1750 1

1500 1

1250 1

1000 1

750 1

Mumber of Occurrences

500 A

250 A

0 1040 200 300 400 500 BO0
Asset prices

Calculate the mean and standard deviation of the distribution for the stock on the last day.
What do you get?

In [30]: #clear
print(predicted_prices.mean(), predicted_prices.std())

105.57162251849806 55.56064496837148

Congratulations! You now have a prediction for a future price for a given stock.

But wait ... Do you think you would get a similar prediction if you were to run the above code
snippet again?

Can you do better?

15

	Asset Pricing
	Write a function called dice that will roll an integer number from 1 to 6.
	Write a function called flip that will randomly choose between -1 (decreasing price) or +1 (increasing price).
	1) Numerical experiment to simulate the asset price variation for a period of 10 days
	2) Numerical experiment to determine the asset price for each day over a period of 10 days
	3) Numerical experiment to determine the asset price for each day over a period of 1000 days
	4) Perform M=10 different numerical experiments, each one with N = 1000 days

	Black-Scholes Model
	1) Growth based on interest rate only
	2) Add parameter to model volatility of the market
	Perform M=10 different numerical experiments, each one with N = 252 days

