
CS 340
Computer Systems

#25: Threading in Python

Apr. 25, 2023 · Wade Fagen-Ulmschneider

Programming Language Support for Threading

Most modern programming languages provide language-level

support for threading:

25/async-await.py

1
2
3
4
5
6
7
8
9
10
11
12
13

import asyncio

async def fibonacci(x, tid):
Base Cases:
if x == 0: return 0
if x == 1: return 1

print(f"{tid}: Calculating fibonacci({x})...")
await asyncio.sleep(0.1)
fx_minus1 = await fibonacci(x - 1, tid)
fx_minus2 = await fibonacci(x - 2, tid)

return fx_minus1 + fx_minus2

The async keyword wraps the function (formally called a “coroutine”)

as an Future object.

● A Future object:

A Future has three states:

[1]: Unfulfilled:

[2]: Fulfilled:

[3]: Failed:

As a procedural programming language, the await keyword exists to

synchronize your code based on the result of a Future:

25/async-await.py

10
11

fx_minus1 = await fibonacci(x - 1, tid)
fx_minus2 = await fibonacci(x - 2, tid)

You can “race” all multiple Future objects:

25/async-await.py

15
16
17
18
19
20
21
22

async def main():
r = await asyncio.gather(
fibonacci(15, "A"),
fibonacci(14, "B"),
fibonacci(13, "C"),

)

print(r)

Q:What output do we get?

Since every async function is just Future, you must asyncio.run
your first one async function (often a function called main):

25/async-await.py

24 asyncio.run(main())

Otherwise: Python does nothing (but does provide a warning):

INCORRECT version of async-await.py:

24 main()

async-await.py:24: RuntimeWarning: coroutine 'main' was
never awaited
main()

RuntimeWarning: Enable tracemalloc to get the object
allocation traceback

Multithreading in Python

Python is multi-threaded, but ___________________________:

25/countup.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import asyncio

ct = 0
THREAD_COUNT_AMOUNT = 10000000

async def countup():
global ct
for i in range(THREAD_COUNT_AMOUNT):
ct += 1

async def main():
await asyncio.gather(
countup(),
countup(),
countup(),

)

print(ct)

asyncio.run(main())

Q:When we did this in C, what happened?

Q:What do we expect to happen in Python?

Q:What is going on that is different in Python than C?

Python is multi-threaded, but ___________________________:

25/countup.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import asyncio
import sys

ct = 0
THREAD_COUNT_AMOUNT = 10000000

async def countup(tid):
global ct
for i in range(THREAD_COUNT_AMOUNT):
if i % 10000 == 0:
sys.stdout.write(tid)
sys.stdout.flush()

ct += 1
await asyncio.sleep(0)

async def main():
await asyncio.gather(
countup("A"),
countup("B"),
countup("C"),

)

print(ct)

asyncio.run(main())

Q:What is the difference between countup and countup2?

Q:What happens when we run this code with :15 commented out?

….and if it’s not commented out?

Q:What can we learn about how Python handles threading verses C?

