
CS 340
Computer Systems

#11: Deadlocks and The Sleeping Barber

Sep. 26, 2023 · G Carl Evans

Critical Sections

We know that critical sections require exclusive access to a resource.

We also know locking a resource is computationally expensive.

However, are there other concerns?

The Dining Philosophers

Imagine five philosophers and five chopsticks at a circular table. Each

philosopher has two states: eating and thinking:

● When a philosopher is thinking, she holds no chopsticks.

● When a philosopher starts the process of eating, she must take

the chopstick to her left, then her right, and then begin eating.

Q: Using the strategy described above (take left, take right, then eat),

what happens over a long period of time?

See Lecture Code: 09/dinning-philosophers.c

Deadlock:

- Definition:

Coffman Conditions:

- Four necessary conditions of deadlock:

1)

2)

3)

4)



Sleeping Barber

A classic problem in synchronization is the "Sleeping Barber Problem"

(a barber is someone who cuts hair).

There are two requirements for the barber:

1. If there are no customers, the barber sleeps in the chair.

2. When there is a customer, the barber wakes up and the

customer sits in the chair for a haircut. If there's already a

customer in the chair, the customer waits until the chair is

available.

Code Overview

Barber: There is only one barber. The barber runs as a single thread

in the barber function. The barber function contains a while (1)
loop. The barber thread must only exit the while (1) loop when a

customer with a name == NULL arrives.

Customer: Each customer runs as a separate thread in the customer
function. Each customer has a unique name provided to the customer
function. There will be many customers arriving concurrently.

Requirements

Complete the sleeping barber problem to ensure that:

● When no customers are present, the barber is waiting for a

customer in a blocked state (NOT “busy waiting”).

● When a customer arrives and no other customers are present,

the barber is unblocked and cuts the customer's hair. The

barber cuts hair by calling cut_hair(const char *name), as
provided in the example code. The name must be the name of

the customer whose hair is to be cut.

● When a customer arrives and another customer is getting their

haircut, the customer must wait in a blocked state (NOT busy

waiting).

10/sleeping-barber/sleeping-barber.c

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

struct _sleeping_barber_t {

};
typedef struct _sleeping_barber_t sleeping_barber_t;

void init(sleeping_barber_t *sb) {

}

void barber(sleeping_barber_t *sb) {
while (1) {

cut_hair("waf");

}
}

void customer(sleeping_barber_t *sb, const char *name) {
// Each customer is a thread! :)

}


