
CS 340
Computer Systems

#9: Synchronization and Dining Philosophers

Sep. 21, 2023 · G Carl Evans

Synchronization: Three Techniques

For C-level synchronization, there are three constructs that we have

available to help us synchronize access to critical sections:

Technique #1: _________________________

pthread_mutex_init: Creates a new lock in the “unlocked” state.

pthread_mutex_lock(pthread_mutex_t *mutex):
● When `mutex` is unlocked, change the lock to the “locked” state

and advance to the next line of code.

● When `mutex` is locked, this function blocks execution until the

lock can be acquired.

pthread_mutex_unlock: Moves the lock to the “unlocked” state.

pthread_mutex_destroy: Destroys the lock; frees memory.

09/count-with-lock.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

pthread_mutex_t lock;
int ct = 0;

void *thread_start(void *ptr) {
int countTo = *((int *)ptr);

int i;
for (i = 0; i < countTo; i++) {
pthread_mutex_lock(&lock);
ct = ct + 1;
pthread_mutex_unlock(&lock);

}

return NULL;
}

Q:What happens when we run this code now?

...and the performance?

Technique #2: _________________________

pthread_cond_init: Create a new conditional variable.

pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t
*mutex): Performs two different synchronization actions:

●

●

pthread_cond_signal(pthread_cond_t *cond): Unblocks “at least one
thread” that is blocked on `cond` (if any threads are blocked; otherwise an
effective “NO OP”).

pthread_cond_broadcast(pthread_cond_t *cond): Unblocks ALL
threads blocked on `cond`.

pthread_mutex_destroy: Destroys the lock; frees memory.

09/producer-consumer.c

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

int things[THINGS_MAX];
int things_ct = 0;

void *producer(void *vptr) {
while (1) {
pthread_mutex_lock(&lock);

// Cannot produce until there's space:
while (things_ct >= THINGS_MAX) {
pthread_cond_wait(&cond, &lock);

}

// Produce a thing:
things[things_ct] = rand();
printf("Produced [%d]: %d\n", things_ct, things[things_ct]);
things_ct++;

// Signal any waiting consumers:
pthread_cond_broadcast(&cond);

pthread_mutex_unlock(&lock);
}

}



Technique #3: _________________________

sem_init: Creates a new semaphore with a specified “value”.

sem_wait: When the value is greater than zero, decreases the value and

continues. Otherwise, blocks until the value is non-zero.

sem_post: Increments the value by one.

sem_destroy: Destroys the semaphore; frees memory.

Critical Sections

We know that critical sections require exclusive access to a resource.

We also know locking a resource is computationally expensive.

However, are there other concerns?

The Dining Philosophers

Imagine five philosophers and five chopsticks at a circular table. Each

philosopher has two states: eating and thinking:

● When a philosopher is thinking, she holds no chopsticks.

● When a philosopher starts the process of eating, she must take

the chopstick to her left, then her right, and then begin eating.

Q: Using the strategy described above (take left, take right, then eat),

what happens over a long period of time?

See Lecture Code: 09/dinning-philosophers.c

Deadlock:

- Definition:

- Four necessary conditions of deadlock:

1)

2)

3)

4)


