
CS 340
Computer Systems

#9: Thread Creation, Join, & Five State Model

Sep. 19, 2023 · G Carl Evans

Example: Launching Fifteen Threads

07/fifteen-threads.c

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23

#include <pthread.h>

const int num_threads = 15;

void *thread_start(void *ptr) {
int id = *((int *)ptr);
printf("Thread %d running...\n", id);
return NULL;

}

int main(int argc, char *argv[]) {
// Create threads:
int i;
pthread_t tid[num_threads];
for (i = 0; i < num_threads; i++) {
pthread_create(&tid[i], NULL,

thread_start, (void *)&i);
}

printf("Done!\n");
return 0;

}

Creating Additional Threads in C

The pthread library is the POSIX thread library allowing you to create

additional threads beyond the initialmain thread.

Creating a new thread is a complex call with four arguments:

int pthread_create(
pthread_t *thread, /* thread struct */
const pthread_attr_t *attr, /* usually NULL */
void *(*start_routine) (void *), /* start func */
void *arg /* thread start arg */

);

The start_routine of pthread_create has a very interesting type
signature:

void *(*start_routine) (void *)

This signature is a function pointer (“functor”) and is the syntax we

can use to pass a pointer to a function. Therefore, the third argument

into pthread_create must be a function with the following prototype:

void *__________(void *ptr);

...you can use any name for the function name.

Q1:What is the expected output of the fifteen-threads.c program?

Q2:What actually happens?

Q3:What do we know about threads in C?

Five-State Thread Model

When the operating system has control over the CPU and needs to

decide what program to run, it must maintain a model of all threads

within the CPU.

We commonly refer to the “state” of a thread as part of the five-state

model:



08/fifteen-join.c

13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

int main(int argc, char *argv[]) {
// Create threads:
int i;
pthread_t tid[num_threads];
for (i = 0; i < num_threads; i++) {
int *val = malloc(sizeof(int));
*val = i;
pthread_create(&tid[i], NULL,

thread_start, (void *)val);
}

// Joining Threads
for (i = 0; i < num_threads; i++) {
pthread_join(tid[i], NULL);

}

printf("Done!\n");
return 0;

}

pthread_join – In the above program, we use pthread_join. This
call will ___________________ from running the program

further until the specified thread has finished and returned.

Q1:What happens in this program?

Q2: Does the order vary each time we run it? What is happening?

Q3: What can we say about the relationship between “Done” and

“Thread %d running...“ lines?

Counting with Threads

Here’s a new program using multiple threads, which we will compile

as the executable count (gcc count.c -lpthread -o count):

08/count.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
…
24
25
…
28
…
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46

int ct = 0;

void *thread_start(void *ptr) {
int countTo = *((int *)ptr);

int i;
for (i = 0; i < countTo; i++) {
ct = ct + 1;

}

return NULL;
}

int main(int argc, char *argv[]) {
/* [...check argv size...] */

const int countTo = atoi(argv[1]);
/* [...error checking...] */
const int thread_ct = atoi(argv[2]);
/* [...error checking...] */

// Create threads:
int i;
pthread_t tid[thread_ct];
for (i = 0; i < thread_ct; i++) {
pthread_create(&tid[i], NULL,

thread_start, (void *)&countTo);
}

// Join threads:
for (i = 0; i < thread_ct; i++) {
pthread_join(tid[i], NULL);

}

// Display result:
printf("Final Result: %d\n", ct);
return 0;

}

Q1:What do we

expect when we run

this program?

Q2:What is the

output of running:

./count 100 2

Q3:What is the

output of running:

./count 100 16

Q4:What is the

output of running::

./count 10000000 2

Q5:What is the

output of running::

./count 10000000 16

Q6:What is going

on???


