
CS 340
Computer Systems

#8: malloc, Page Eviction, and Threads

Sep. 14, 2023 · G Carl Evans

Data Structures for Heap Management

When we manage heap memory, we need to use memory to help us

store memory:

● Overhead:

● Allocated Memory:

Metadata-based Approach to Memory Storage

06/heap.c

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

int *a = malloc(4096);
printf("a = %p\n", a);
free(a);

int *b = malloc(4096);
printf("b = %p\n", b);

int *c = malloc(4096);
printf("c = %p\n", c);

int *d = malloc(4096);
printf("d = %p\n", d);

free(b);
free(c);

int *e = malloc(5000);
printf("e = %p\n", e);

int *g = malloc(10);
printf("g = %p\n", g);

int *g = malloc(10);
printf("g = %p\n", g);

Heap w/ Data Structures:

Pages in Cache – Eviction/Replacement Strategies:

We know that memory is divided into pages, a page table provides a

translation between virtual page numbers and physical pages, and that

we allocate memory via malloc. How do we decide what pages to

cache?

Strategy #1:

17 33 40 17 43 8 99 33 99 17

C

A

C

H

E

Strategy #2:

17 33 40 17 43 8 99 33 99 17

C

A

C

H

E

Strategy #3:

17 33 40 17 43 8 99 33 99 17

C

A

C

H

E

Strategy #4:

17 33 40 17 43 8 99 33 99 17

C

A

C

H

E

Other Strategies:



Fragmentation

As we develop various systems for storage, we want to minimize

fragmentation.

● [Fragmentation]:

● [Internal Fragmentation]:

● [External Fragmentation]:

Fragmentation Example in Heap Memory:

Unallocated (3072 bytes)

Used (4096 bytes)

Free (3072 bytes)

Used Data (2048 bytes)

⇐ End of Heap

⇐ Start of Heap

Abstraction #4: Computer Peripherals

● Every other piece of hardware we consider to be a “peripheral”.

● Interface managed by the _______________________.

○ ...and managed using _____________________.

● Examples:

Threads: The Unit of Computation in an Operating System

As a programmer, the single most important construct in an

Operating System is a thread.

● Every thread has a program counter, a pointer that stores

the next instruction to be read by a program.

● A ____________ is an organization of one or more threads

in the same context. A simple process has only one thread.

● In C, the initial thread is called the __________________.

○ It is what starts running your main() function!

Example: Launching Fifteen Threads

07/fifteen-threads.c

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23

#include <pthread.h>

const int num_threads = 15;

void *thread_start(void *ptr) {
int id = *((int *)ptr);
printf("Thread %d running...\n", id);
return NULL;

}

int main(int argc, char *argv[]) {
// Create threads:
int i;
pthread_t tid[num_threads];
for (i = 0; i < num_threads; i++) {
pthread_create(&tid[i], NULL,

thread_start, (void *)&i);
}

printf("Done!\n");
return 0;

}


