
CS 340
Computer Systems

#4: Welcome to ECE

Aug. 31, 2023 · G Carl Evans

Instruction Set Architecture (ISA)

Every CPU has a set of commands it understands known as its

Instruction Set Architecture or ISA. Two ISAs are very common:

1.

2.

An ISA defines the function of the hardware in the CPU – one could

say the ISA is the: ___________________.

CPU Registers

CPU Registers are on-dye modules that are physically interconnected

with the hardware performing the CPU operations (ex: they’re

hard-wired to the ADD circuit).

…in fact, almost all CPU operations ____________________!

Three key ideas to know about CPU registers:

1. [Size]:

2. [Speed]:

3. [Limited]:

● x64 (ex: Intel, AMD):

● ARMv8 (ex: Apple M1/M2, Cell Phones):

CPU Register Names

The 16 general purpose x64 CPU registers have names based on how

many bits you’re working with:

64-bits 32-bits 16-bits 8-bits

0 %rax %eax %ax %al

1 %rbx %ebx %bx %bl

2 %rcx %ecx %cd %cl

3 %rdx %edx %dx %dl

4 %rsi %esi %si %sil

5 %rdi %edi %di %dil

6 %dbp %ebp %bp %dpl

7 %rsp %esp %sp %spl

...

Instruction Sets

Every ISA defines a set of instructions that a CPU can execute:

Move: MOV, XCHG, PUSH, POP, ...

Arithmetic (int): ADD, SUB, MUL, DIV, NEG, CMP, ...

Logic: AND, OR, XOR, SHR, SHL, ...

Control Flow: JMP, LOOP, CALL, RET, ...

Synchronization: LOCK, ...

Floating Point: FADD, FSUB, FMUL, FDIV, FABS, ...

ARM processors have significantly fewer instructions and are known

as __________________________ while x64 processors have a

greater set of instructions and known as ____________________.

Q: Advantages of RISC / CISC?

CPU Instruction in a Real Program

04.c

1
2
3
4
5
6
7
8
9
10
11
12
13

#include <stdio.h>

int main() {
int a = 0;
a = a + 3;
a = a - 2;
a = a * 4;
a = a / 2;
a = a * 5;
printf("Hi");
a = a * 479;
return a;

}

To compile a program without optimizations and references back to

the original code, the “debug” flag is required:

$ gcc -g 04.c

Then, we can dump the output object in a human readable format:

$ objdump -d ./a.out

This result of this command shows EVERY operation that the CPU

will execute when running the program! The operations that

correspond to the main() function are organized to the right (⇒).

One Special Register: _________________

04.c
gcc -g 04.c
objdump -d ./a.out

3 int main() { f3 0f 1e fa endbr64
55 push %rbp
48 89 e5 mov %rsp,%rbp
48 83 ec 10 sub $0x10,%rsp

4 int a = 0; c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

5 a = a + 3; 83 45 fc 03 addl $0x3,-0x4(%rbp)

6 a = a - 2; 83 6d fc 02 subl $0x2,-0x4(%rbp)

7 a = a * 4; c1 65 fc 02 shll $0x2,-0x4(%rbp)

8 a = a / 2;

8b 45 fc mov -0x4(%rbp),%eax
89 c2 mov %eax,%edx
c1 ea 1f shr $0x1f,%edx
01 d0 add %edx,%eax
d1 f8 sar %eax
89 45 fc mov %eax,-0x4(%rbp)

9 a = a * 5;

8b 55 fc mov -0x4(%rbp),%edx
89 d0 mov %edx,%eax
c1 e0 02 shl $0x2,%eax
01 d0 add %edx,%eax
89 45 fc mov %eax,-0x4(%rbp)

10 printf("Hi");

48 8d 3d f0 0d 00 00 lea 0xdf0(%rip),%rdi
2004 <_IO_stdin_used+0x4>

b8 00 00 00 00 mov $0x0,%eax
e8 42 fe ff ff callq 1060<printf@plt>

11 a = a * 479;

8b 45 fc mov -0x4(%rbp),%eax
69 c0 df 01 00 00 imul $0x1df,%eax,%eax
89 45 fc mov %eax,-0x4(%rbp)

Operation Timings

Q: Do all operations take the same amount of time on the CPU?

Q: What are the CPU timings for various operations?

