
CS 340
Computer Systems

#3: C Programming and Logic Gates

Aug. 29, 2023 · G Carl Evans

Programming in C

Today, you’ll begin your very first program in C!

● You already know how to program in C++!🎉
● Programming in C is a simplification of the C++ programming.

1. Program Starting Point of ALL C PROGRAMS:

2. Printing Using printf() (and include <stdio.h>):

03/printf.c printf has a variable

number of arguments:

First argument

Additional arguments

3
4
5
6
7
8
9
10
11
12
13

int main() {
int i = 42;
char *s = "Hello, world!";
float f = 3.14;

printf("%d %s %f\n", i, s, f);
printf("%d\n", s[0]);
printf("%d\n", s);
printf("%d\n", f);
return 0;

}

3. Pointers:

4. Heap Memory

Allocation:

03/malloc.c

4
5
6
7
8
9
10
11
12
13
14
15
16

typedef struct _myObject {
int value;
char *s;

} myObject;

int main() {
char *s = malloc(10);
myObject *obj = malloc(sizeof(myObject));
obj->value = 3;

printf("%p %p %d\n", s, obj, obj->value);
return 0;

}

5. Strings – There is no “data type” in C known as a string. Instead,

we refer to “C Strings” as a sequence of characters:

● A “C string” is just a character pointer: ________.

● The string continues until it reaches a ________ byte.

● C will automatically include the NULL byteONLY when using

double quotes in your code (not counted as part of the length,

but does require memory – extremely tricky!)

03/string.c

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

char *s = malloc(6);
strcpy(s, "cs340");
printf("s[0]: 0x%x == %d == %c\n", s[0], s[0], s[0]);
printf("s[4]: 0x%x == %d == %c\n", s[4], s[4], s[4]);
printf("s[5]: 0x%x == %d == %c\n", s[5], s[5], s[5]);
printf("s == \"%s\", strlen(s): %ld\n\n", s, strlen(s));

char *s2 = s + 2;
printf("s2[0]: 0x%x == %d == %c\n", s2[0], s2[0], s2[0]);
printf("s2 == \"%s\", strlen(s2): %ld\n\n", s2, strlen(s2));

*s2 = 0;
printf("s2[0]: 0x%x == %d == %c\n", s2[0], s2[0], s2[0]);
printf("s2 == \"%s\", strlen(s2): %ld\n\n", s2, strlen(s2));

printf("s == \"%s\", strlen(s): %ld\n", s, strlen(s));

…what is happening in memory?

03/utf8.c

6
7
8
9
10
11
12
13
14

char *s = malloc(5);
s[0]=0xF0; s[1]=0x9F; s[2]=0x8E; s[3]=0x89; s[4]=0x00;

char *s1 = "\xF0\x9F\x8E\x89";
char *s2 = "🎉";
char *s3 = "\U0001f389"; // \U - must be 8 bytes

printf("%s %s %s %s\n", s, s1, s2, s3);
printf("strlen(): %ld %ld %ld %ld\n", strlen(s), strlen(s1),

strlen(s2), strlen(s3));

…how can we represent non-ASCII characters in C code?

Some extremely useful built in string functions:

- strcmp(char *s1, char *s2) -- Compares two strings

- strcat(char *dest, char *src) -- Concatenate two strings
- strcpy(char *dest, char *src) -- Copies a string
- strlen(char *s) -- Returns the length of the string



Logic Gates and Truth Tables

We can begin to define the building blocks of the CPU by basic

instructions with input bits and output bits through logical gates.

● By convention, you will see that the input bits are labeled A
and B by default.

Logic Gate #1:

Logic Gate #2:

Logic Gate #3:

Logic Gate Challenge: A XOR B

We can also express this in a table known as a truth table:

Op. Binary Math Example Values

A x 1100 110011 101

B y 1010 11 010

AND A & B xy

OR A | B x + y

XOR A ^ B x XOR y

NOT !A x’

Truth Table: Half Adder

A B A + B SUM CARRY

Truth Table for a Half Adder

Circuit Diagram for a “Half Adder”:

Full Adder:

A B CARRYin SUM CARRYout

Truth Table for a Full Adder

Circuit Diagram for a “Full Adder”:

Chaining Circuits Together: _______________________

Disadvantages:


