| #2: Character Encodings and Binary Math

CS 340

Computer Systems |Aug. 24, 2023 - G Carl Evans

Representing Letters: ASCII
Representing numbers is great -- but what about words? Can we
make sentences with binary data?

e Key Idea: Every letter is binary bits." I ASCII
(This means that every letter is hex digits.)

e Global standard called the American Standard Code for
Information Interchange (ASCII) is a
for translating numbers to characters.

[ASCII Character Encoding Examples:

Binary Hex| Char. Binary Hex| Char.

ob 0100 0001| Ox41| A 6b 0110 0001 0x61 a

ob 0100 0010 0Ox42| B ob 6110 6010 0x62(b

C c

D d

0beo10 0100 ©0x24| $ 0bo111 1011 0x7b {

...and now we can form sentences!

Q: Are there going to be any issues with ASCII?

Representing Letters: Other Character Encodings
Since ASCII uses only 8 bits, we are limited to only 256 unique
characters. There’s far more than 256 characters -- and what about
EMOJIs?? &

e Many other character encodings exist other than ASCII.

e The most widely used character encoding is known as

Unicode Transformation Format (8-bit) or
e Standard is ISO/IEC 10646 (Updated annually!).

Technical Details of UTF-8 Encoding

UTF-8 uses a -bit design where each character by be
any of the following;:
Length | Byte #1 Byte #2 Byte #3 Byte #4
1-byte |0___ ____
2-bytes: | 116_ ____ |10__ ____
3-bytes: [1110 ____ [16__ ____ 10__ ____
4-bytes: | 1111 o___ [16__ ____ 10__ ____ 10__ ____

Unicode characters are represented by U+## (where ## is the hex
value of the character encoding data) and all 1-byte characters match
the ASCII character encoding;:

e ‘a’isASCII ,or

Example: € (epsilon) is defined as U+83b5. How do we encode this?

Example: I received the following binary message encoded in UTF-8:
0100 1000 0110 1001 1111 0000 10061 1111 1000 1110 10600 1001
1. What is the hexadecimal representation of this message?

2. What is the byte length of this message?
3. What is the character length of this message?

4. What does the message say?

02/utf8-binary.c

4| wunsigned char message[] = {

5 0b01001000, 0b01101001, 6b11110000,
0b10011111, 0b10001110, 6b10001001, O

6 1},

7| printf("%s\n", message);

Bit Manipulation: Binary Addition 42 18
For the past two lectures we have focused on the first foundation:

DATA. Today, we are going to begin the transition away from data - 18 - 42
and into how data applies to the CPU. Binary addition work just like

decimal addition, but with only 0s and 1s:

ob 810011 ob 8011
+ 6b 001001 + 6b 8111
-42 31
- 32 + 42

Negative Numbers:

6b 0610011 ob 0011
- 0b 001001 - 0b 0111

Overflow Detection in Two’s Complement:

Two’s Complement
The Two’s Complement is a way to represent signed (ex: positive vs.
negative) numbers in a way !

Towards Multiplication
With Two’s Complement, we can add and subtract numbers! What
about more complex operations?

10 x 2 =
For simplicity, let’s imagine running on an 7-bit machine:
-17 = 10 x 4 =
4- 10 x 9 =
Bit Shift Operations:
-1=

1. [Left Shift]:

2. [Right Shift]:

