
MP4 Overview Session
CS 340 - Introduction to Computer Systems

TA: Ameya Gharpure Slides Inspiration: Eunice Zhou



Goals of the MP

● Write multithreaded programs in C
○ Create thread safe data structures
○ Use mutex, condition variable, etc

● Implement a wallet that will hold resources



Multithreading Overview

● What is a thread?: A thread is a path of execution within a process 
● Can a process have multiple threads: Yes, there can be multiple threads within a 

single process. A process usually starts with only the main thread



Synchronization

● Race Condition: A thread touches a piece of shared memory at the same time as 
another thread

● Critical Section: A piece of shared memory that only one thread should be able to 
access at a time

A 👛 with 40 💎
Thread 1: Reads 40 💎 Thread 2: Reads 40 💎

Withdraws 40 💎

0 💎 in the wallet Adds 20 💎
60 💎 in the wallet

The wallet should have 20 💎, not 60 💎



Mutex
Programming in C language

● pthread_mutex_init: create a mutex
● pthread_mutex_destroy: destroy a mutex
● pthread_mutex_lock: block execution for all other threads trying to acquire mutex
● pthread_mutex_unlock: unblock execution for all other threads trying to acquire 

mutex and allow another thread use the mutex



Avoid Busy Waiting

● Avoid checking repeatedly if a condition is met
○ Don’t keep checking if your wallet has a positive balance for a resource to allow you to withdraw

● This can cause issues with race conditions
● Busy waiting will waste system resources



Condition Variable
Programming in C language

● pthread_cond_init: create a condition variable
● pthread_cond_destroy: destroy a condition variable
● pthread_cond_wait: release a mutex and block on the current thread using the 

condition variable
● pthread_cond_signal: unblock at least one thread that is blocked on a condition 

variable 
● pthread_cond_broadcast(): unblock all threads that are blocked on a condition 

variable



Spurious Wakeup

● Spurious Wakeup: A thread may randomly wake up for no reason
● This can happen where another thread changes the condition before the waiting 

thread runs
● We want to call pthread_cond_wait in a loop to avoid issues with spurious wakeup



MP4 Functions
Implementing the Resource Manager



Structs in wallet.h

● wallet_t - maintain the state of the wallet
● wallet_resource - represent the resource in a wallet
● Feel free to add any other variables to these structs



Wallet Functions

● wallet_init() - initialize the wallet structure
○ The wallet is initially empty with no resources

● wallet_get() - return the amount of a given resource
○ Remember to ensure that access to the wallet is thread-safe

● wallet_change_resource() - change the amount of a resource by a given delta
○ The amount of resource can not go negative
○ The thread must wait until the request can be satisfied (avoid busy waiting)

● wallet_destroy() - free any memory associated with the wallet structure



Memory Correctness

● You do not have write any additional code for this part.
● Your code need to run “valgrind clean”:

○ Zero memory error, no memory leak
○ free() any memory allocated with malloc/calloc
○ fclose() any file opened with fopen

All heap blocks were freed -- no leaks are possible

● Valgrind does not work on macOS. Use it with a Docker 
container. 


