
CS 340
Computer Systems

#18: Data Storage - File Systems to Cloud

October 25, 2022 · Wade Fagen-Ulmschneider

Data Storage

Throughout every program you have ever written, you have had to

handle data storage in some way. Let’s explore our options for data

storage:

[1]: __________________

Why? How?

[2]: __________________

Why? How?

[3]: __________________

Why? How?

[4]: __________________

Why? How?

[5]: __________________

Why? How?

[6]: __________________

Why? How?

[7]: __________________

Why? How?

File Systems

All modern systems utilize an Operating System to facilitate the

storage of data in units called “files”:

waf@sp22-cs340-001:~$ ls -la

drwxr-xr-x 7 waf csvm340-cls 4096 Oct 22 11:25 .
drwxr-xr-x 3 root root 4096 Oct 10 13:42 ..
-rw------- 1 waf csvm340-cls 19 Oct 10 13:56 .bash_history
-rw-r--r-- 1 waf csvm340-cls 220 Oct 10 13:42 .bash_logout
-rw-r--r-- 1 waf csvm340-cls 3771 Oct 10 13:42 .bashrc
drwx------ 2 waf csvm340-cls 4096 Oct 10 13:42 .cache
drwxr-xr-x 2 waf csvm340-cls 4096 Oct 22 11:22 cs340
drwxr-xr-x 2 waf csvm340-cls 4096 Oct 21 14:35 docker
Permission

Bits [1]
[3] File Owner and

Group [2]
File Size (bytes) [4]

and Date Modified [5]
File Name [6]

[1]: Permission Bits:

d r w x r w x r w x

Dir User Group Other

[2]: File Owner and File Group

[5]: Last Modified Date:

● Almost all modern operating systems store three different date

fields for every single file:

a.

b.

c.

● The date/time fields are always based on your local

computer clock -- easily modified, easily faked.

[6]: File Name

● “dot” files and directories:

Q: Why does local file storage not work on a cloud-scale system?

Cloud Object Storage

Instead of using local file storage, large data storage in the

cloud-based systems are commonly stored as “objects”. These

objects (files) are organized into __________________:

Public Cloud Providers Private Cloud Solutions

Example: AWS

Amazon AWS S3 CreateBucket REST API
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html

PUT / HTTP/1.1
Host: Bucket.s3.amazonaws.com
x-amz-acl: ACL
x-amz-grant-read: GrantRead : UserList
x-amz-grant-write: GrantWrite : UserList
x-amz-grant-full-control: GrantFullControl : UserList
x-amz-grant-read-acp: GrantReadACP : UserList
x-amz-grant-write-acp: GrantWriteACP : UserList
[...]

Bucket: Name of the bucket. [Required]

ACL: The canned Access Control to apply to the bucket.
private | public-read | public-read-write | authenticated-read

UserList: You specify each grantee (user) as a type=value pair, where the type is

one of the following:

id – if the value specified is the canonical user ID of an AWS account

uri – if you are granting permissions to a predefined group

emailAddress – if the value specified is the email address of an AWS account

Ex: x-amz-grant-read: id="11112222333",id="444455556666"

ACP: x-amz-grant-read grants permission for the file itself;

x-amz-grant-read-acp grants permissions for the access control

policies.

+ Lots of Language-level Libraries

Private Cloud Solutions:

MinIO: https://docs.min.io/docs/python-client-api-reference.html#make_bucket

OpenStack/Swift:

https://docs.openstack.org/api-ref/object-store/index.html?expanded=create-contai

ner-detail#create-container

Adding files to storage are also HTTP endpoints:

Amazon AWS S3 PutObject REST API
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html

PUT /Key HTTP/1.1
Host: Bucket.s3.amazonaws.com
x-amz-tagging: Tagging
x-amz-acl: ACL
x-amz-grant-full-control: GrantFullControl : UserList
x-amz-grant-read: GrantRead : UserList
x-amz-grant-read-acp: GrantReadACP : UserList
x-amz-grant-write-acp: GrantWriteACP : UserList
[...]
Content-Length: ContentLength

Body

Q: Is there a directory structure similar to traditional file systems?

Cloud Object Storage in Python

Instead of using file storage on disk, object storage in the cloud

provides us access to a file-system-like interface without the need for

all programs to be running on the same computer!

Reading a file in Python:

18/local.py

1
2

f = open("settings.json", "r")
print(f.read())

Reading Data from S3:

18/s3.py

1
2
3
4
5
6

import boto3
s3 = boto3.client('s3', [...])

Reading data from S3:
obj = s3.get_object(Bucket="cs340", Key="session_data")
f = obj["Body"]

https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html#API_CreateBucket_RequestSyntax
https://docs.min.io/docs/python-client-api-reference.html#make_bucket
https://docs.openstack.org/api-ref/object-store/index.html?expanded=create-container-detail#create-container
https://docs.openstack.org/api-ref/object-store/index.html?expanded=create-container-detail#create-container
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html

