
CS 340
Computer Systems

#15: API Programming and Virtualizations

October 13, 2022 · Wade Fagen-Ulmschneider

Sending HTTP Requests:

In Python, the requests library provides us the ability to make HTTP

requests to external APIs:

15/api.py

1
2
3
4
5

import requests

r = requests.get("https://www.colr.org/json/color/random")
print(f"Status Code: {r.status_code}")
print(f"Character Encoding: {r.encoding}")

● requests.get(...) sends a GET request,

● requests.post(...) sends a POST request,

● requests.put(...) sends a PUT request,

● …etc…

The requests library is just a wrapper around the request and response

from any HTTP web service:

15/api.py

7
8
9
10
11
12
13
14
15
16

print("== Headers ==")
for header in r.headers:
print(header + ": " + r.headers[header])

print("== Payload (text) ==")
print(r.text)

print("== Payload (json) ==")
data = r.json()
print(data["colors"][0]["hex"])

Note that:

- r.text returns the response as a string (at attribute).

- r.json() parses it for us into a dictionary for us to index into

quickly (it’s a function, requires the parameters)!

Receiving HTTP Requests:

The flask library allows us to receive HTTP requests:

15/app.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

from flask import Flask
app = Flask(__name__)

@app.route('/', methods=["GET"])
def index():
return "index function!"

@app.route('/', methods=["POST"])
def post():
return "post function!"

@app.route('/hello', methods=["GET"])
def hello():
return "hello function!"

@app.route('/hello/<id>')
def with_id(id):
return f"with_id function: {id}"

@app.route('/hello')
def mystery():
return "mystery function!"

What happens with the following requests:

1. GET /
2. POST /
3. PUT /
4. GET /hello/
5. GET /hello
6. POST /hello
7. PUT /hello
8. GET /hello/42
9. GET /hello/world

Operating Systems: A Great Illusionist

Throughout this entire course, we have discussed how the operating

system abstracts away the complexity of real systems:

● As a process, it appears that we have ________________.

● ...and has __________________________________!

Virtualization

Q: What is a “machine”?

Big Idea:

Map a _________________ onto a ______________.

● All states SX can be represented on a host system H(SX).

● For all sequences of transitions between S1⇒ S2, there is a

sequence of transitions between H(S1) ⇒ H(S2).

- Language Virtualization:

- Process Virtualization:

- System Virtualization:

Language Virtualization: Example w/ a JVM

Initial State (S1):

Transition (S1⇒ S2):

System #1

COPY r1 1
SHIFTL x 2
ADD x r1

System #2

COPY r1 x
SHIFTL x
SHIFTL x
ADD x r1

System #3

COPY r1 x
ADD r1 x
ADD r1 x
ADD r1 x
ADD r1 x

Final State (S2):

System Virtualization: Containers

A commonly deployed form of visualization is ____________.

● As a developer of a Docker, you build a Dockerfile that

specifies the snapshot of the system you want to provide and

then build that snapshot into a ___________.

● Create a Dockerfile to specify how to build the image:

mp3/Dockerfile

1
2
3
4

FROM gcc:latest
COPY ./docker/entrypoint.sh /
RUN chmod +x entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

To build it:

$ docker build --tag mp3-docker .

● As a user of a container, you specify the name of the docker

image that you want to use to launch that image:

$ docker run -it --rm -v "pwd":/mp3 mp3-docker "make"

$ docker run --rm -it -p 27017:27017 mongo

System Virtualization: Hypervisor

…has this changed our industry??

Your CS 340 Virtual Machine:

The CS department has a “private cloud”, containing cloud services for

us to use!

● As part of being in CS 340, you have your very own VM!

● This machine is a “private cloud” solution to “Infrastructure as

a Service” and is effectively identical to AWS EC2 or other

compute services.

