| #14: Web Services, Python, and flask
|October 11, 2022 - Wade Fagen-Ulmschneider

CS 340

Computer Systems

Web Services We describe anything that provides data back from
an HTTP endpoint as a “web service”. Three main categories:

[1]:

—

GET /cs340/fa2022/ HTTP/1.1
Host: courses.grainger.illinois.edu

N

Advantages: Disadvantages:

[2]:

National Weather Service API:
https://api.weather.gov/points/{latitude}, {longitude}

Location of 151 Loomis:

—

GET /points/
Host: api.weather.gov\r\n

HTTP/1.1

N

RESTful Requirements:

[3]:

—

POST /q/api/queues/788/staff/1 HTTP/1.1
2|Host: queue.illinois.edu
Content-Length: 477

W

{ "id": 30540, "startTime": "2021-10-05T15:48:57.000Z", "endTime": null, "createdAt":
"2021-10-65T15:48:57.000Z", "updatedAt": "2021-10-85T15:48:57.000Z", "userId": 1, "queueId": 788,
"user": { "name": "Wade A Fagen-Ulmschneider", "id": 1, "netid": "waf", "universityName": "Wade A
Fagen-Ulmschneider", "preferredName": null, "isAdmin": true, "createdAt": "2018-02-14T05:27:54.000Z",
"updatedAt": "2018-82-21T05:34:33.000Z" } }

HTTP Verbs (Defined in RFC 7231 §4)
Every HTTP request has an “action verb” that describes the action
requested of the web server:

e GET: Requests a representation of the specified resource.
Requests using GET should only retrieve data.
e POST: Submits an entity to the specified resource, often
causing a change in state or side effects on the server.
e HEAD: Asks for a response identical to a GET request, but
without the response body.
e PUT: Replaces all current representations of the target resource
with the request payload.
e DELETE: Deletes the specified resource.
e PATCH: Applies partial modifications to a resource.
e CONNECT: Establishes a tunnel to the server identified by the
target resource.
e OPTIONS: Describes the communication options for the target
resource.
e TRACE: Performs a message loop-back test along the path to
the target resource.
Why the Web Works:
(1):
(2):


https://datatracker.ietf.org/doc/html/rfc7231#section-4

Python Programming Flask Library:

All modern programming languages provide many libraries for The flask library focuses on providing a simple interface to handling
quickly and easily working with web requests. In CS 240, we will web requests:
focus on Python and use the flask library for web requests.
14/app.py
Python Overview: 1| from flask import Flask
- Python is an “interpreted” programming language: g app = Flask(__name__)
4 | # Route for "/" for a web-based interface to this

micro-service:

- Note: Python only allows one thread to access the CPU 5 | @app.route('/")
(others can be blocked or ready, but there is no parallel 6 | def index():
execution)! (Simplifies the execution environment, but 7 from flask import render_template
prevents optimizations that are possible in C/C++.) 8 return render_template("index.html")
9
- Python is a “dynamically typed” programming language: 10 | # Extract a hidden "uiuc" GIF from a PNG image:

11 | @app.route('/extract', methods=["POST"])
12 | def extract_hidden_gif():
13 # ...

- Python’s control-flow is whitespace delimited: )
Import Statements (Line 1, 7):

. . Python Comments (4, 10):
- Python places heavy emphasis on code readability:

Python Function Definitions (Lines 6, 12):

14/hello.py
; z; ; “ H:lil;:gd" Python Decorator (Lines 5, 11):
3
4| for i in range(10):
5 if i < 5: Running a Python program:
6 print(s1)
7 elif i < 8:
8 print(s1 + s2)
1: el;iint (s2) Elask is widel){ used, lot§ of great resources available! (This
is why we use widely used libraries!)




