Synchronization: Three Techniques
For C-level synchronization, there are three constructs that we have available to help us synchronize access to critical sections:

Technique #1: _________________________
- `pthread_mutex_init`: Creates a new lock in the “unlocked” state.
- `pthread_mutex_lock(pthread_mutex_t *mutex)`:
 - When `mutex` is unlocked, change the lock to the “locked” state and advance to the next line of code.
 - When `mutex` is locked, this function blocks execution until the lock can be acquired.
- `pthread_mutex_unlock`: Moves the lock to the “unlocked” state.
- `pthread_mutex_destroy`: Destroys the lock; frees memory.

Technique #2: _________________________
- `pthread_cond_init`: Create a new conditional variable.
- `pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)`: Performs two different synchronization actions:
 - `pthread_cond_signal(pthread_cond_t *cond)`: Unblocks “at least one thread” that is blocked on `cond` (if any threads are blocked; otherwise an effective “NO OP”).
 - `pthread_cond_broadcast(pthread_cond_t *cond)`: Unblocks ALL threads blocked on `cond`.
- `pthread_mutex_destroy`: Destroys the lock; frees memory.

Q: What happens when we run this code now?
...and the performance?
Technique #3: _________________________

sem_init: Creates a new semaphore with a specified “value”.

sem_wait: When the value is greater than zero, decreases the value and continues. Otherwise, **blocks** until the value is non-zero.

sem_post: Increments the value by one.

sem_destroy: Destroys the semaphore; frees memory.

Critical Sections
We know that critical sections require exclusive access to a resource. We also know locking a resource is computationally expensive. However, are there other concerns?

The Dining Philosophers
Imagine five philosophers and five chopsticks at a circular table. Each philosopher has two states: **eating** and **thinking**:
- When a philosopher is thinking, she holds no chopsticks.
- When a philosopher starts the process of eating, she must take the chopstick to her left, then her right, and then begin eating.

Q: Using the strategy described above (take left, take right, then eat), what happens over a long period of time?

See Lecture Code: 09/dinning-philosophers.c

Deadlock:

- **Definition:**

- **Four necessary conditions of deadlock:**
 1)
 2)
 3)
 4)