Example

\[\text{precipitation } > 0.5 \]

\[\begin{array}{c}
\text{Temperature } < 30 \\
\text{Temperature } \geq 70
\end{array} \]

\[\begin{array}{c}
\text{if } x_i < 30 \\
\text{if } x_i \geq 70
\end{array} \]

\[\begin{array}{c}
\text{N} \\
\text{Y}
\end{array} \]

\[\begin{array}{c}
\text{N} \\
\text{Y}
\end{array} \]

\[\begin{array}{c}
1 \\
-1
\end{array} \]

\[\begin{array}{c}
1 \\
-1
\end{array} \]

\[x = (50, 0.1) \quad \text{output } = +1 \]

Decision Tree: Binary tree
- Internal nodes: \(X_i \times \theta \) (\(\theta \in \{<, >, \leq, \geq\} \))
- Leaves: Labeled by the output.

Classification: Output is \(\{+1, -1\} \)

Decision Tree \((S, k)\)

- **if** construction is terminated
 - **Output** a leaf with a label = \(\text{maj}(S) \)
- **else**
 - For all \(j, \theta \)
 - \(S_N = \{ x \in S | x_j < \theta \} \)
 - \(S_Y = \{ x \in S | x_j \geq \theta \} \)
 - \(C(j, \theta) = (1 - \max_{a \in \text{maj}(S)} p_a^N(a)) + (1 - \max_{a \in \text{maj}(S)} p_a^Y(a)) \)
 - Pick \(j, \theta \) that minimize \(C(j, \theta) \)

\[p_a(x) = \frac{\# \text{ examples in } S = a}{|S|} \]

Decision Tree \((S_N, k)\)

Decision Tree \((S_Y, k)\)
\[\hat{p}_S(a) = \frac{\text{# examples in } S \text{ with output } a}{\text{# examples in } S} \]

\[C_S = 1 - \max_{a \in \{0, 1\}} \hat{p}_S(a) \]

Error entropy cost:

\[C_S = \sum_{a=0}^{1} \hat{p}_S(a) \log \hat{p}_S(a) \]

- Construction of the decision
- Prune the decision tree
 - Bottom-up process where some sub-trees are replaced by leaves

Decision Trees are prone to overfitting

Bagging:
- Construct decision trees on multiple training sets
- Actual answer on a new example is "aggregation" of the answers given by each decision tree.
Construct new training sets by sampling with replacement from examples in \(S \).

- Pick some example from \(S = \{(x_i, y_i) \} \ldots \)}