Algorithms and Data Structures for Data Science Binary Search Tree

CS 277 Brad Solomon April 9, 2025

Department of Computer Science

Learning Objectives

Review understanding of Binary Trees

Extend ADT to Binary Search Trees

Implement BST operations

(Binary) Tree Recursion

A **binary tree** is a tree *T* such that:

$$T = None$$

or

$$T = treeNode(val, T_L, T_R)$$

```
class treeNode:
def __init__(self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right
```

```
1 class binaryTree:
2    def __init__(self):
3         self.root = None
4    5
```

Tree ADT

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

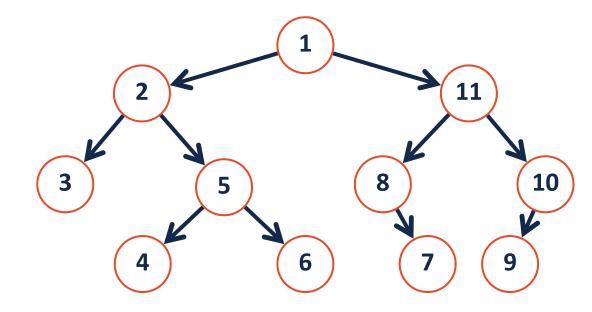
Search: Find a specific object in the tree

Binary Tree Traversal

Last class we implemented traversals using recursion, stacks, and queues.

What implementations led to a **depth first search traversal**?

Which lead to breadth first search?



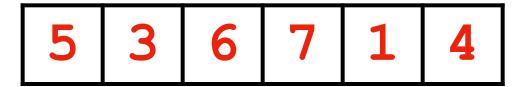
Binary Tree Utility

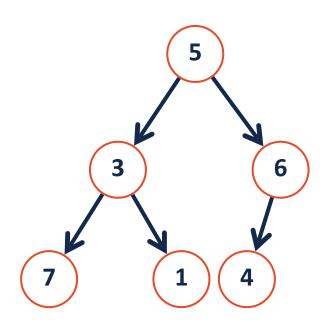
This week we will deep dive into useful implementations of binary trees

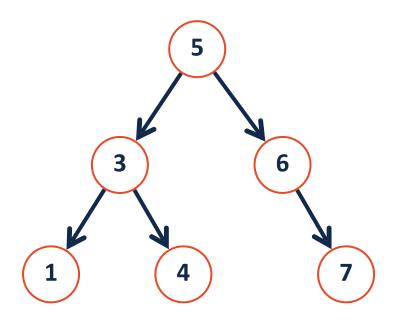
Binary Search Tree: An efficient implementation of a dictionary

Huffman Tree: A binary tree used to define an optimal text encoding

Improved search on a binary tree





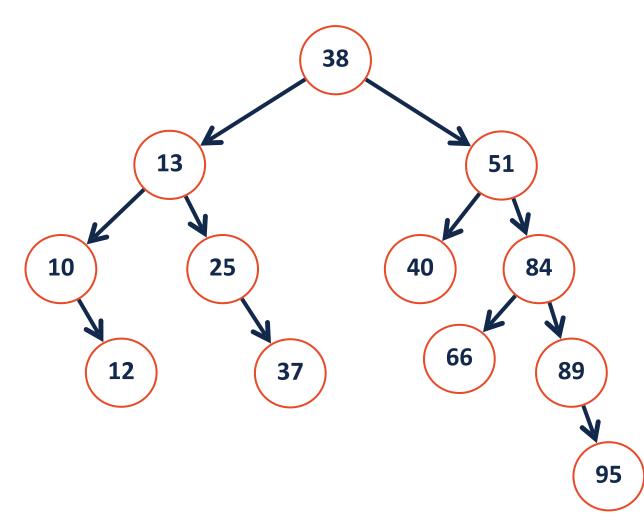


Binary Search Tree (BST)

A **BST** is a binary tree $T = treeNode(val, T_L, T_r)$ such that:

$$\forall n \in T_L, n.val < T.val$$

$$\forall n \in T_R, n.val > T.val$$



Dictionary ADT

Data is often organized into key/value pairs:

Word → Definition

Course Number → Lecture/Lab Schedule

Node → Edges

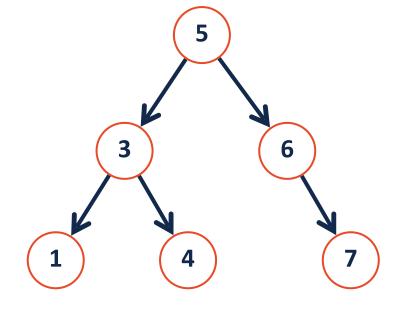
Flight Number → Arrival Information

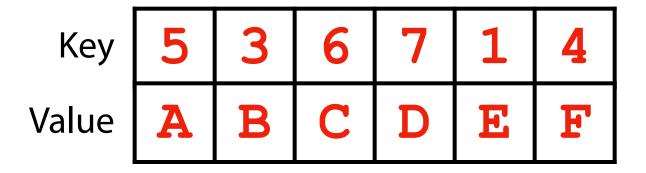
URL → HTML Page

Average Image Color → File Location of Image

Dictionary as a Binary Search Tree

```
class bstNode:
    def __init__(self, key, val, left=None, right=None):
        self.key = key
        self.val = val
        self.left = left
        self.right = right
```





Binary **Search** Tree ADT — what changed?

Constructor: Build a new (empty) tree

Insert: Add an object into tree

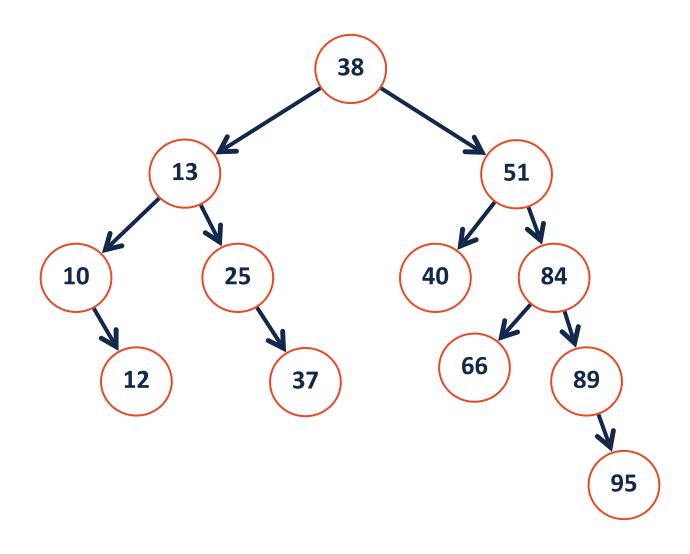
Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

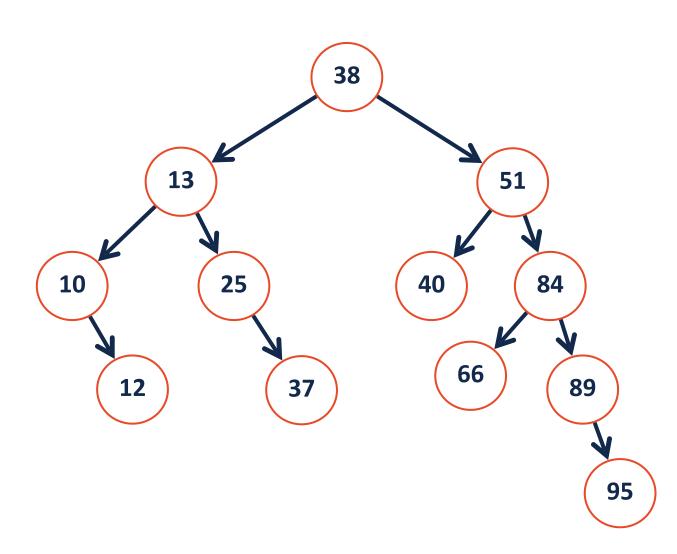
Find

Search: Find a specific **key** in the tree, **return value**

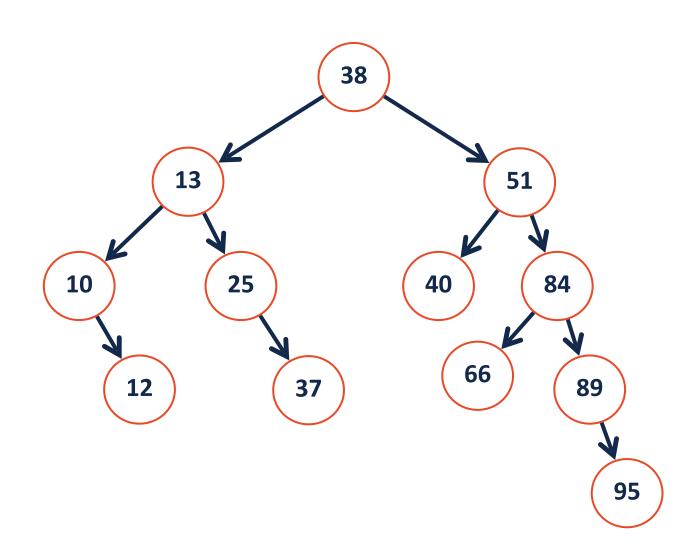
BST In-Order Traversal



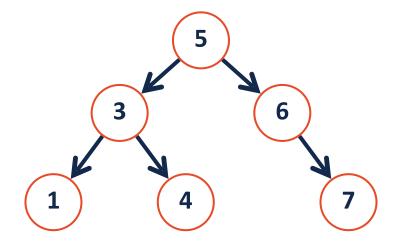
find(66)



find(9)



Base Case:



Recursive Step:

Combining:

A recursive function based around value of root:

Base Case: If root is None, return root

If root.key is query, return root

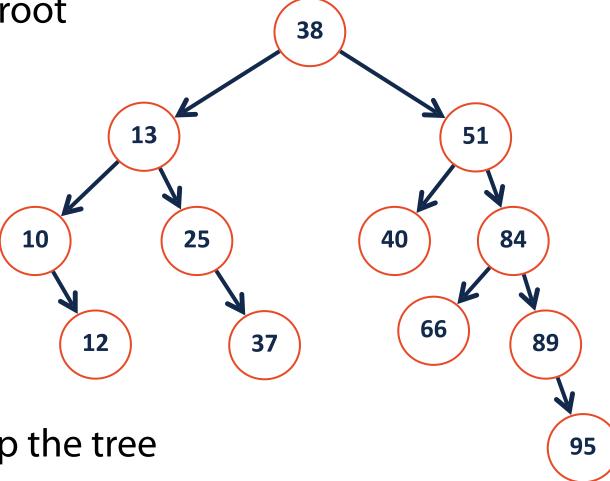
Recursion:

root.key ____ query, recurse right

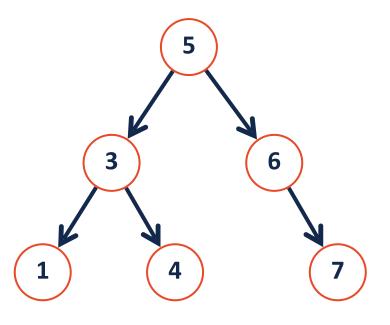
root.key ____ query, recurse left

Combining:

Return the recursive value back up the tree



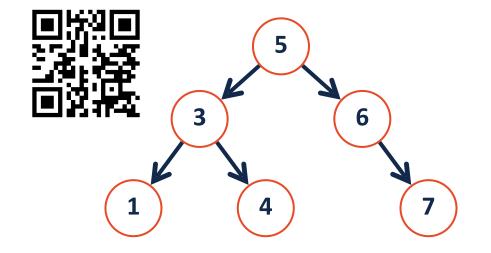

```
#inside class bst
   def find(self, key):
 3
 4
 5
 6
 7
 8
   def find_helper(self, node, key):
10
11
12
13
14
15
16
17
18
19
20
21
22
23
```



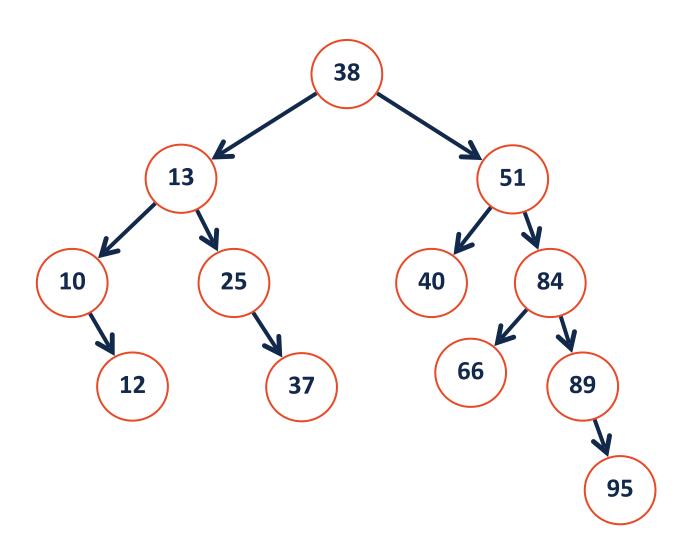
Base Case:

Recursive Step:

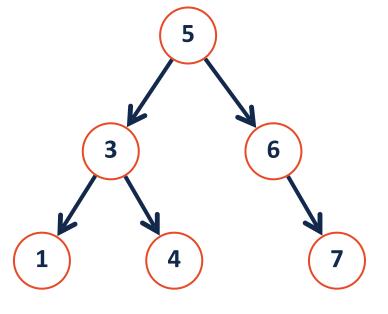
Combining:



insert(33)

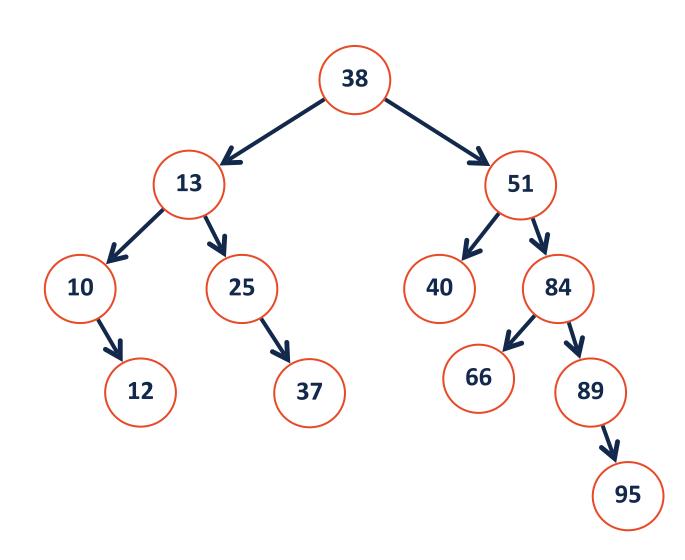


```
# inside class bst
   def insert(self, key, val):
       self.root = self.insert_helper(self.root, key, val)
 3
   def insert_helper(self, node, key, val):
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
```

What binary tree would be formed by inserting the following sequence of integers: [3, 7, 2, 1, 4, 8, 0]

remove (40)



remove (12)

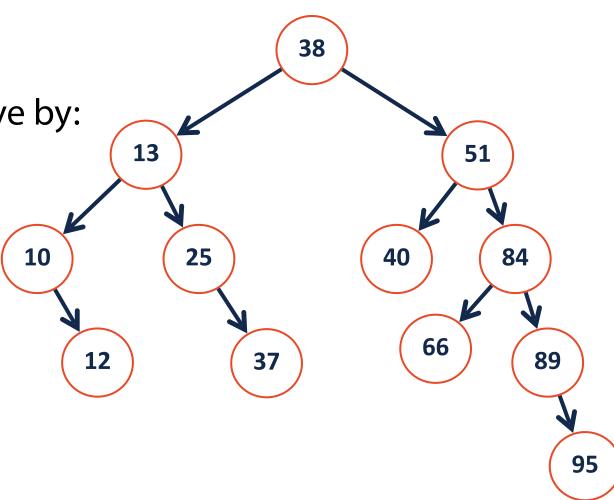
1) Find item being removed

2) Identify number of children

When we have zero children, remove by:

Set parent.**next** = None

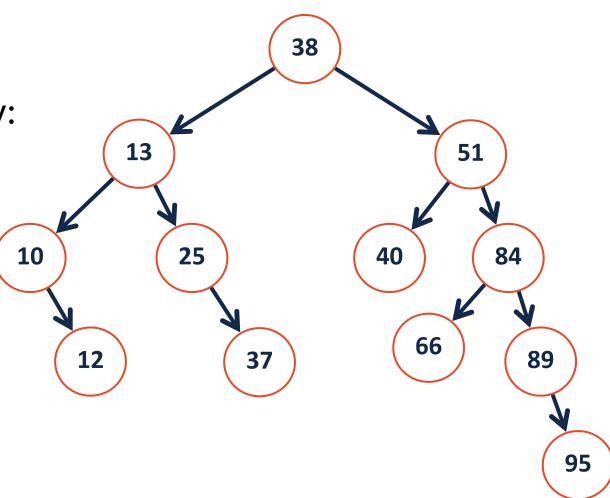
next is either left or right



remove (25)

- 1) Find item being removed
- 2) Identify number of children

When we have one child, remove by:



remove (10)

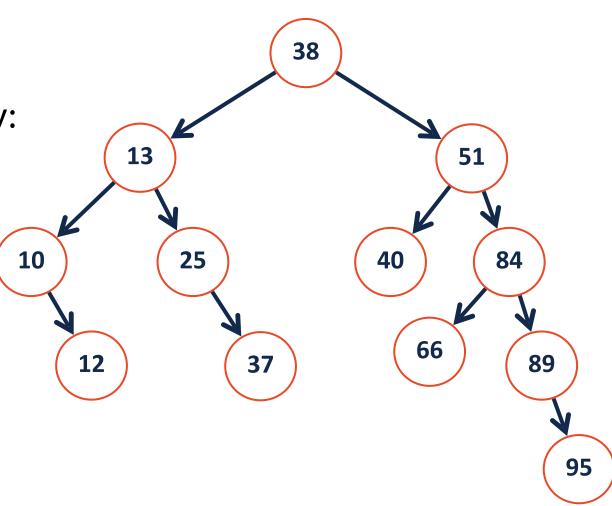
- 1) Find item being removed
- 2) Identify number of children

When we have one child, remove by:

Set parent.next1 = target.next2

next1 is either left or right

next2 is either left or right

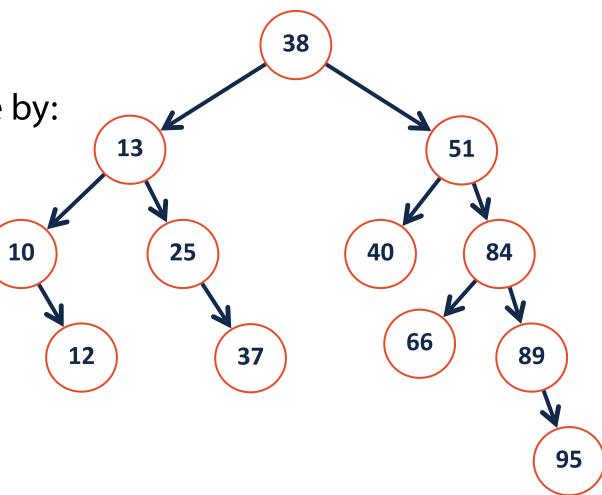


remove (13)

1) Find item being removed

2) Identify number of children

When we have two children, remove by:



BST In-Order _____

In-Order Predecessor

Rightmost left child

$$IOP(38) =$$

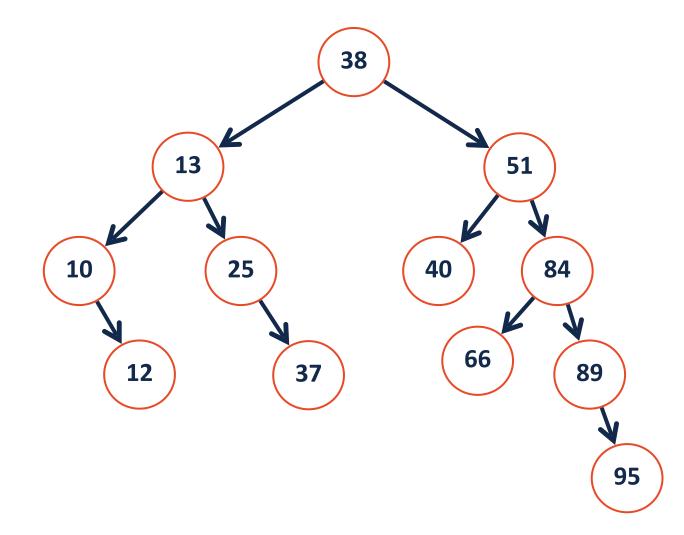
$$IOP(84) =$$

In-Order Successor

Leftmost right child

$$IOS(38) =$$

$$IOS(84) =$$



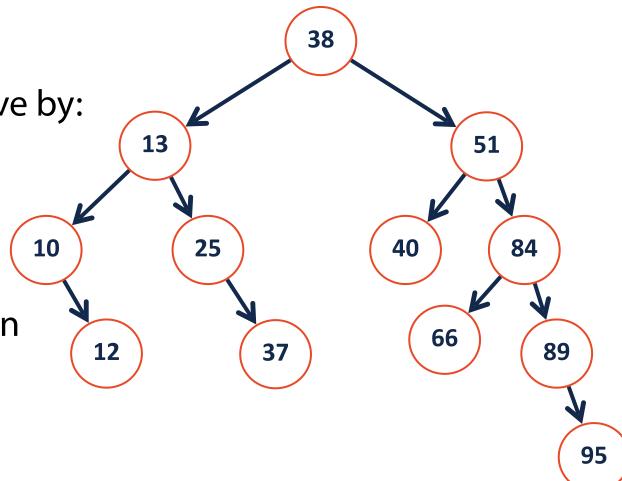
remove (13)

1) Find item being removed

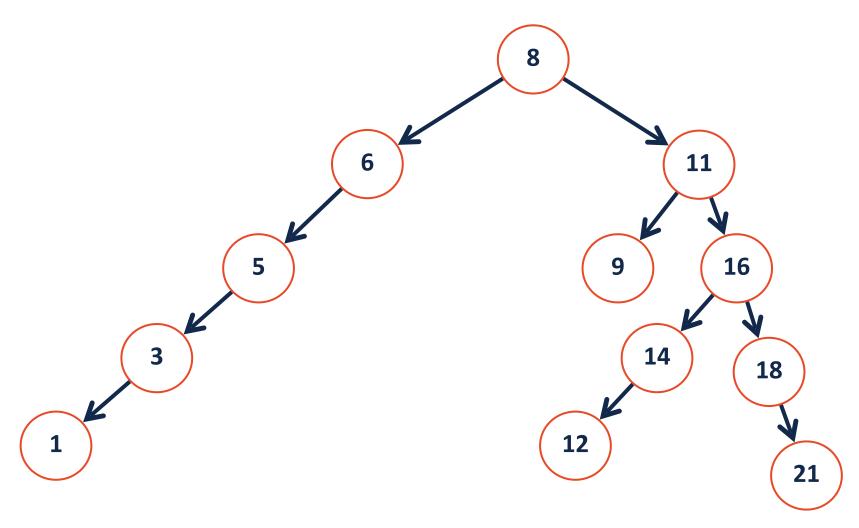
2) Identify number of children

When we have two children, remove by:

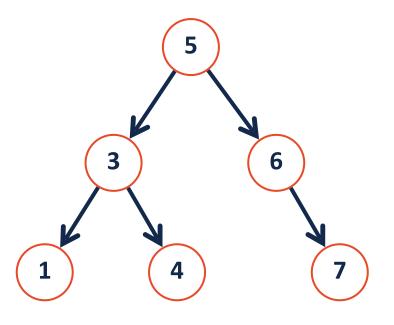
- 3) Find the IOP / IOS
- 4) Swap target with IOP / IOS
- 5) Remove target at its new location



What will the tree structure look like if we remove node 16 using IOS?




```
def remove(self, key):
       self.root = self.remove_helper(self.root, key)
   def remove_helper(self, node, key):
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
```



BST Analysis – Running Time

Operation	BST Worst Case
find	
insert	
delete	
traverse	

Every operation on a BST depends on the **height** of the tree.

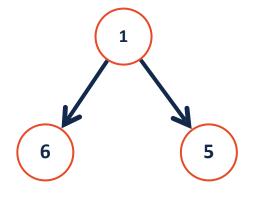
... how do we relate O(h) to n, the size of our dataset?

What is the max number of nodes in a tree of height h?

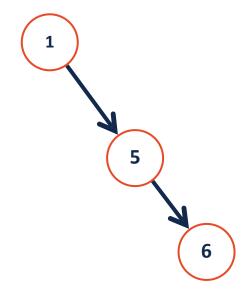
What is the min number of nodes in a tree of height h?

A BST of *n* nodes has a height between:

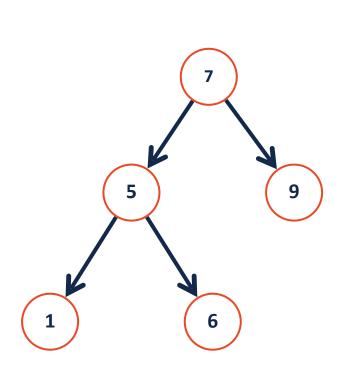
Lower-bound: $O(\log n)$

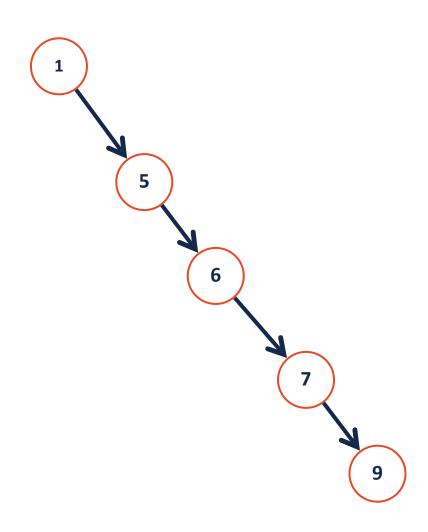


Upper-bound: O(n)



Limiting the height of a tree





Option A: Correcting bad insert order

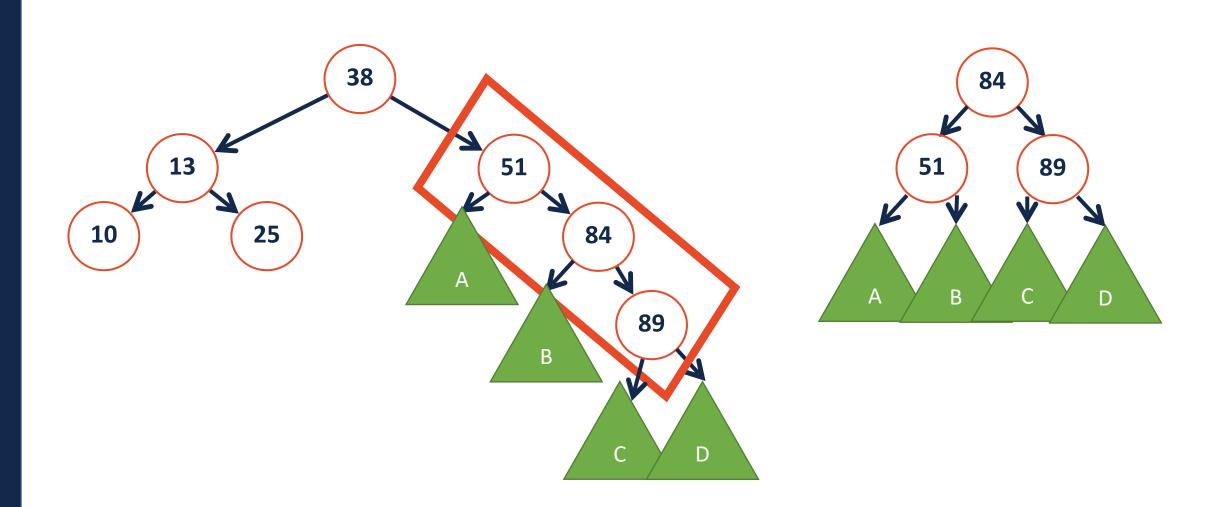
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

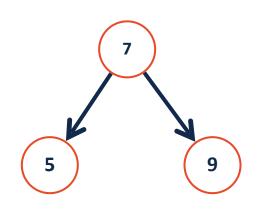
AVL-Tree: A self-balancing binary search tree

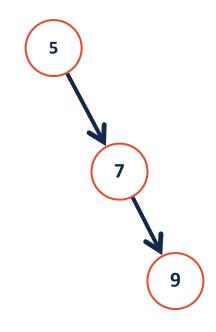
Rather than fixing an insertion order, just correct the tree as needed!



Height-Balanced Tree

What tree is better?



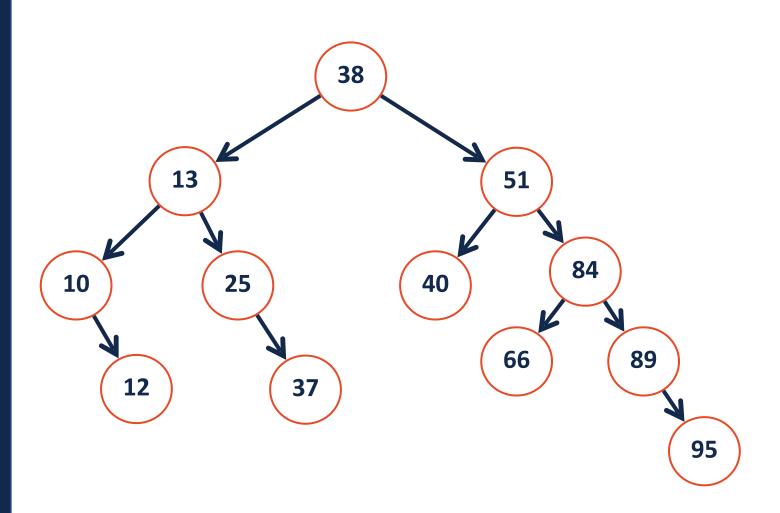


Height balance: $b = height(T_R) - height(T_L)$

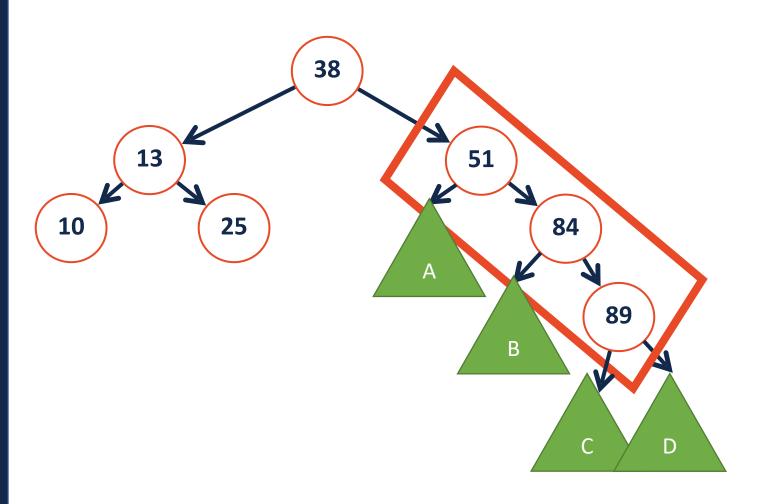
A tree is "balanced" if:

BST Rotations (The AVL Tree)

We can adjust the BST structure by performing **rotations**.



Left Rotation



Left Rotation

