Algorithms and Data Structures for Data Science

Linked Lists 2 and Multi-Dimensional Lists

CS 277 February 12, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science



Announcements

Reminder: Exam 0O this week!

Reminder: MP 0 due this Wednesday

Informal Early Feedback form out




Informal Early Feedback

An anonymous survey about the class
If 70% of class completes, everyone gets bonus points

Please provide constructive criticism and positive feedback




Learning Objectives

Review Big O in the context of linked lists
Be able to justify the choice of a linked list vs array list
Extend knowledge of lists into two dimensions

Create and modify 2D lists using built-in and NumPy methods




(Theoretical) List Implementations

1. Array List

2. Linked List

—None




Linked List Node

class Node: nl = Node (3)
def init (self, data, next=None): n2 = Node (5)
self.data = data n3 = Node (7)

self.next = next

b WdNhR

nl.next = n2
n2.next = n3

curr = nl
print (curr.next.next.data)

OWoJdJoyUldbWNPRK

—None




In-Class Exercise: Linked List __getitem__ ()

11l = linkedList()
for i in range(5):
1ll.add (i)

b WdNhR

print (11[3])

head

— —> None




In-Class Exercise: Linked List __getitem__ ()

11l = linkedList()
for i in range(5):
1ll.add (i)

b WdNhR

print (11[3])

PR RR
WNhNROoOWVWOJIOUId WN R

head

_—None




Linked List: insert() ' findpreviousnode

1| for i in range(5):
2 11.add (i)
3| 2. Create a new Node( )
4|1l .insert ("Value", 2)
5| print (11)
head \
> B —>None




Linked List: insert()

1| for i in range(5): 1| def insert(self, data, pos=0):
2 11.add (i) 2
3 3
4|1l .insert ("Value", 2) 4
5| print (11) 5
6
7

head

_—None




Linked List: insert()

1| for i in range(5): 1| def insert(self, data, pos=0):

2 11.add (i) 2 if (pos == 0):

3 3 self.add (data)

4|11 .insert ("Value", 2) 4 else:

5|print(11) 5 prev = self. getitem (pos-1)
6 temp = prev.next
7 prev.next = Node (data, temp)

head \




Linked List; delete( )

for i in range(5):
11.add (i)

1l .delete (1)
print(11)

b WdNhR

head

_—None




Linked List: delete() @

1| for i in range(5): 1
2 11.add (i) 2
3 3
4|1l .delete (1) 4
5| print (11) 5

6

7

head

— None




In-Class Exercise: remove( )

11 = linkedList()

for i in range(5):
1l.add (1)
1l.add (i)

SJSoorbdh WM PR

1l.remove (4)

head




In-Class Exercise: remove( )

1|11 = linkedList() 1
2 2
3| for i in range(5): 3
4 1l.add (1) 4
5 1l.add (i) 5
6 6
7| 11.remove (4) 7
8
9
10
11

head




Array Implementation @
_ [simgiylinkedlst JAmay

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value




Whats next?

1. Improve coding capabilities on multi-dimensional lists

2. Apply lists towards computational modeling problems in 2D




Programming Toolbox: 2D Arrays

Lists in Python store objects. Lists in Python are objects.

def makeMatrix () :

M[2]

M[1][O]

M[O0] [2]




Programming Toolbox: 2D Arrays

If it helps, visualize as a Linked List storing arrays!

Outer Liii/L/’

0

7

8

9

4|5

1] 2

—u} \ e&—— None
1 2 3

S

*~——

&

Or as an array that is pointing to its sub-arrays




Programming Toolbox: 2D Arrays

What shape will this code produce?

OoJdJoUld WN =

outerlist = []

for i in range(5):
innerlist = []

for j in range(5):
innerList.append(i+j)

outerlList.append (innerList)




Programming Toolbox: 2D Arrays

What values will this list produce?

OoJdJoUld WN =

outerlist = []

for i in range(5):
innerlist = []

for j in range(5):
innerList.append(i+j)

outerlList.append (innerList)




Programming Toolbox: 2D Arrays

What are the indices of every value of 4 in this list?

O

Nl wliNnv R

vi| | W N

v b W|N

N oo|ul| | W

I | o vl b

OoJdJoUld WN =

outerlist = []

for i in range(5):
innerlist = []

for j in range(5):
innerList.append(i+j)

outerlList.append (innerList)




Programming Toolbox: NumPy

NumPy is optimized for multidimensional arrays of numbers

import numpy as np

# Convert list to np list
nl = np.array([1, 2, 3, 4, 5, 6])
print(nl)

# See list shape
print (nl.shape)

WoodJdJoUidkd WNR

10| # Modify list shape
11| nl2 = nl.reshape (3, 2)

13| print(nl)
14| print(nl2)

16| # Create a new list
17|nl3 = np.arange(15) .reshape (5, 3)
18/ nl4 np.zeros((2, 5))

20| print (nl3)
21| print(nl4)




Programming Toolbox: NumPy

Basic operations are applied elementwise (to each item of a list)

nl = np.arange (4) .reshape (2, 2)
print(nl)
nl2 = nl * 2

print (nl2)

WoodJdJoUidkd WNR

# Matrix multiplication
10| # 0*0+1*4 0*0+1*6
11| # 2*0+3*4 2*%243%6
12| print(nl.dot (nl2))

Explore on your own: https://numpy.org/devdocs/



https://numpy.org/devdocs/

Chemokines,
Hormones,
Survival Factors Transmitters Growth Factors
(e.g., IGF1) (e.g., interleukins,  (e.g., TGFa, EGF) EX‘;::S:LUI&

Computational Modeling S
(  TAol o=\

J

)
PI3K ~—] G-Protein Ras FAK Dishevelled «— R}
¥ /—ﬂ’x ¥ src ¥ g
Akt Raf g
/ | P*ic Adenylate } GSi( 3p Hedaeh
S cyclase edgehog
s Akka (8o i MEK APC /
3 PKA ' =
Cytokines __weimn | 14 MEKK ~ MAPK  MKK B-catenin Rl
; (e.g,, EPC) 2 T sTAT3S L TCF %":,;
Generate 1 Perceive 3 yov v g
:=Mad: =
© Bel-xL mzi: M:x ERK JNKs  p_catenin:TCF < ]
| Fos Jun 2
Cytochrome C CREB \ / Gli «— 100
G([21,22,23]) Caspase 9 BN EN
} E2F
N Gene Regulation ;
. CyclE —p27
C 8
aspase 8 — ( Apoptosis o e
\) o
{ L S—Cell p21
FADD Bel-2 a& md"‘{m53 Proliferation/
Bad\ Mt<— Bax
Abnormality
FasR  sensor HB\m—J

Death factors
(e.g. FasL, Tnf)

a) Reference

Generated reference ( n = 7 samples)

Cell
Nucleus
Generated target
b) Target

Kangassalo, L. et al (2020)
https://doi.org/10.1038/s41598-020-71287-1

Donovan-Maiye RM et al. (2022) A deep generative model of 3D single-cell organization.
PLOS Computational Biology 18(1): €1009155.



https://doi.org/10.1371/journal.pcbi.1009155

Cellular Automata

A computational model consisting of a matrix and a set of rules
Each iteration, the matrix changes based on its current state

There are a number of emergent behaviors that can be discovered!

0- o-
O_
5 2-
l,
4_
10 -
2_
6_
15 -
8- 3_
20 -
10 - .
0 5 10 15 20 0 2 4 6 8 10 0 1 2 3 4




Flood Analysis Cellular Automata *

0.13m

Water Depth Water Depth
Values: Difference
Bl 5.50m Values:
- 4.50m - -5.00m
Il 3.50m B -2.00m
Il 2.80m (@) (b) [ -1.00m
I 2.00m . _— [ -0.50
[0 1.40m ‘ [1-0.10m
[ 0.70m . 0.00m
[ ]025m [ o.10m
— I 0.50m
| 10.00m B 1.00m
Il 2.00m
Hl 3.00m
Il 5.00m

“I-

o

\ «««

M
(A

0 1 2 3 4 Cell # 0 1 2 3 4

Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Ghimire et al 2013

A weighted cellular automata 2D inundation model for rapid flood analysis. Guidolin et al 2016



The Flood Fill Cellular Automata

We will use a much simpler model! We have water and impassible barriers.

Each step each square splits its water evenly between all nearby cells

The key CA trick: Each square calculates simultaneously.




The Flood Fill Cellular Automata

Total cells:

Weight change:

Total cells:

Weight change:




The Flood Fill Cellular Automata

Frame: 0

Frame: O

Frame: 1




Conway’s Game of Life Rules

Developed by John Conway in 1970

A mostly academic Turing Complete simulation

The ruleset looks at more squares but has easier rules for the final values

A‘simple’but very interesting computational model




Conway’s Game of Life Rules

A‘cell’is either alive or dead and has at most 8 neighbors around it




Conway’s Game of Life Rules

All cells in a matrix update at the same time according to the following:
1. Any live cell with fewer than two live neighbors dies.

2. Any live cell with two or three live neighbors lives.

3. Any live cell with more than three live neighbors dies

4. Any dead cells with exactly three live neighbors becomes a live cell.




Conway’s Game of Life Rules

1. Any live cell with fewer than two live neighbors dies.




Conway’s Game of Life Rules

1. Any live cell with fewer than two live neighbors dies.




Conway’s Game of Life Rules

2. Any live cell with two or three live neighbors lives.




Conway’s Game of Life Rules

3. Any live cell with more than three live neighbors dies




Conway’s Game of Life Rules

4. Any dead cells with exactly three live neighbors becomes a live cell.




Conway’s Game of Life @

A fun demo version of the game: https://playgameoflife.com/

Note: Every cell is updated at the same time



https://playgameoflife.com/

For next time: Modifying 2D lists safely

We want to simultaneously update every square in a matrix...

The easiest way to do this is to make a copy of the matrix.




