
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

February 12, 2024

Linked Lists 2 and Multi-Dimensional Lists

Announcements
Reminder: Exam 0 this week!

Reminder: MP 0 due this Wednesday

Informal Early Feedback form out

Informal Early Feedback
An anonymous survey about the class

If 70% of class completes, everyone gets bonus points

Please provide constructive criticism and positive feedback

Learning Objectives

Be able to justify the choice of a linked list vs array list

Review Big O in the context of linked lists

Extend knowledge of lists into two dimensions

Create and modify 2D lists using built-in and NumPy methods

(Theoretical) List Implementations
1. Array List

2. Linked List

C S 2 7 7
None

Linked List Node
class Node:
 def __init__(self, data, next=None):
 self.data = data
 self.next = next

1
2
3
4
5

n1 = Node(3)
n2 = Node(5)
n3 = Node(7)

n1.next = n2
n2.next = n3

curr = n1
print(curr.next.next.data)

1
2
3
4
5
6
7
8
9

C S 2 7 7
None

In-Class Exercise: Linked List __getitem__()
1
2
3
4
5

head

ll = linkedList()
for i in range(5):
 ll.add(i)

print(ll[3])

0 1 2 3 4
None

In-Class Exercise: Linked List __getitem__()
1
2
3
4
5

head

ll = linkedList()
for i in range(5):
 ll.add(i)

print(ll[3])

0 1 2 3 4
None

1
2
3
4
5
6
7
8
9

10
11
12
13

In-Class Exercise: Linked List __getitem__()
1
2
3
4
5

head

ll = linkedList()
for i in range(5):
 ll.add(i)

print(ll[3])

0 1 2 3 4
None

def __getitem__(self, pos):
 curr = self.head

 i = 0
 while(curr and i < pos):
 curr = curr.next
 i+=1

 if i == pos:
 return curr
 else:
 raise ValueError("Out of bounds")
 return None

1
2
3
4
5
6
7
8
9

10
11
12
13

Linked List: insert()
1
2
3
4
5

head

for i in range(5):
 ll.add(i)

ll.insert("Value", 2)
print(ll)

0 1 2 3 4
None

1. Find previous node

2. Create a new Node(,)

3. Set previous node’s next to be new Node

Linked List: insert()
1
2
3
4
5

head

for i in range(5):
 ll.add(i)

ll.insert("Value", 2)
print(ll)

0 1 2 3 4
None

def insert(self, data, pos=0): 1
2
3
4
5
6
7

Linked List: insert()
1
2
3
4
5

head

for i in range(5):
 ll.add(i)

ll.insert("Value", 2)
print(ll)

0 1 2 3 4
None

def insert(self, data, pos=0):
 if (pos == 0):
 self.add(data)
 else:
 prev = self.__getitem__(pos-1)
 temp = prev.next
 prev.next = Node(data,temp)

1
2
3
4
5
6
7

Linked List: delete()
1
2
3
4
5

head

for i in range(5):
 ll.add(i)

ll.delete(1)
print(ll)

0 1 2 3 4
None

Linked List: delete()
1
2
3
4
5

head

for i in range(5):
 ll.add(i)

ll.delete(1)
print(ll)

0 1 2 3 4
None

1
2
3
4
5
6
7

Linked List: delete()
1
2
3
4
5

head

for i in range(5):
 ll.add(i)

ll.delete(1)
print(ll)

0 1 2 3 4
None

def delete(self, i):
 if i == 0:
 self.head = self.head.next
 else:
 prev = self.__getitem__(i-1)
 prev.next = prev.next.next

1
2
3
4
5
6
7

In-Class Exercise: remove()
1
2
3
4
5
6
7

head

ll = linkedList()

for i in range(5):
 ll.add(i)
 ll.add(i)

ll.remove(4)

0 1 1 3 4 4

…

In-Class Exercise: remove()
1
2
3
4
5
6
7
8
9

10
11

head

0 1 1 3 4 4

…

1
2
3
4
5
6
7

ll = linkedList()

for i in range(5):
 ll.add(i)
 ll.add(i)

ll.remove(4)

In-Class Exercise: remove()
def remove(self, data):
 if self.head == data:
 self.head = self.head.next
 return

 curr = self.head
 while(curr.next):
 if(curr.next.data == data):
 curr.next = curr.next.next
 return
 else:

1
2
3
4
5
6
7
8
9

10
11

head

0 1 1 3 4 4

…

1
2
3
4
5
6
7

ll = linkedList()

for i in range(5):
 ll.add(i)
 ll.add(i)

ll.remove(4)

Array Implementation
Singly Linked List Array

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value

Whats next?
1. Improve coding capabilities on multi-dimensional lists

2. Apply lists towards computational modeling problems in 2D

Programming Toolbox: 2D Arrays
Lists in Python store objects. Lists in Python are objects.

def makeMatrix():

7 8 9

4 5 6

1 2 3

M[1][0] =

M[0][2] =

M[2] =

Programming Toolbox: 2D Arrays
If it helps, visualize as a Linked List storing arrays!

7 8 9

4 5 6

1 2 3

Outer List

4 5 67 8 9 1 2 3

None

Or as an array that is pointing to its sub-arrays

Programming Toolbox: 2D Arrays

outerList = []

for i in range(5):
 innerList = []

 for j in range(5):
 innerList.append(i+j)

 outerList.append(innerList)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

What shape will this code produce?

Programming Toolbox: 2D Arrays

outerList = []

for i in range(5):
 innerList = []

 for j in range(5):
 innerList.append(i+j)

 outerList.append(innerList)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

What values will this list produce?

Programming Toolbox: 2D Arrays

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

outerList = []

for i in range(5):
 innerList = []

 for j in range(5):
 innerList.append(i+j)

 outerList.append(innerList)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

What are the indices of every value of 4 in this list?

Programming Toolbox: NumPy
NumPy is optimized for multidimensional arrays of numbers

import numpy as np

Convert list to np list
nl = np.array([1, 2, 3, 4, 5, 6])
print(nl)

See list shape
print(nl.shape)

Modify list shape
nl2 = nl.reshape(3, 2)

print(nl)
print(nl2)

Create a new list
nl3 = np.arange(15).reshape(5, 3)
nl4 = np.zeros((2, 5))

print(nl3)
print(nl4)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Programming Toolbox: NumPy
Basic operations are applied elementwise (to each item of a list)

nl = np.arange(4).reshape(2, 2)

print(nl)

nl2 = nl * 2

print(nl2)

Matrix multiplication
0*0+1*4 0*0+1*6
2*0+3*4 2*2+3*6
print(nl.dot(nl2))

1
2
3
4
5
6
7
8
9

10
11
12

Explore on your own: https://numpy.org/devdocs/

https://numpy.org/devdocs/

Computational Modeling

Donovan-Maiye RM et al. (2022) A deep generative model of 3D single-cell organization.
PLOS Computational Biology 18(1): e1009155. https://doi.org/10.1371/journal.pcbi.1009155

Kangassalo, L. et al (2020)
https://doi.org/10.1038/s41598-020-71287-1

https://doi.org/10.1371/journal.pcbi.1009155

Cellular Automata
A computational model consisting of a matrix and a set of rules

Each iteration, the matrix changes based on its current state

There are a number of emergent behaviors that can be discovered!

metric, as expected the best agreement is between the models at
2 m resolution and it deteriorates for coarser resolutions. The values
of the R2 metric are over 0.95, around 0.90 and lower than 0.90 for
respectively the 2 m, 4 m and 8 m resolutions. The agreement be-
tween the two models is always lower at 30 min of the simulations
for all the resolutions, with the extreme case of the 8 m one.

The low values of R2 at 30min of the simulation could be caused
by the differences in predicting the time of arrival of the various
fronts between the two models. In the graphs showing the tem-
poral variation of the water level of Fig. 12 it is possible to see that
there is a sharp increase in the front around the 30-minmark. Thus,
even a slight difference between the two models in predicting the
time of arrival of the front, could result in a large difference in the
water level. Another possible explanation is that the R2 metric is
sensitive to extreme values mainly when there are not enough data
points, as it is in the case of the 8 m test cases and at 30 min of the
simulations.

The TPR and FDR metrics are used to compare the inundation
extend between the two models. The TPR metric shows that the
WCA2Dmodel predicts as inundated over 70% of the area identified
by the IW in the simulation, with a maximum of 93% for the 2 m
resolution test case. The FDR metrics shows the percent of area not

Table 3
Comparisons of the WCA2D run time for the EA test cases versus IW run time.

Run time (seconds)

EAT2 EAT4 EAT8a

Computation type MC GPU MC GPU MC GPU
WCA2D Fine s 15.3 4.7 590.1 38.0 390.4 37.4
WCA2D Coarse s 4.5 2.2 312.3 23.8 124.2 12.5
IW 20.1 9.3 260.9 22.4 448.4 58.8

Fig. 10. Example of a large difference (d) in water depth between the square grid results of IW (b) and WCA2D (c) due to the transformation of the IW triangular mesh results (a).

Table 4
Information about the WCA2D and IW simulations of the Torquay test case.

Parameters/Model (Resolution) WCA2D (8 m) WCA2D (4 m) WCA2D (2 m) IW (8 m) IW (4 m) IW (2 m)

of data cells/ ¼ triangles 123,080 492,377 1,969,477 123,874 490,997 1,964,144
Avg. cell/triangle area 64.00 m2 16.00 m2 4.00 m2 61.31 m2 15.47 m2 3.87 m2

Type of time step s ¼ 1.48% s ¼ 1.8% s ¼ 1.61% Adaptive Adaptive Adaptive

Table 5
Metrics values of the comparison between IW and WCA2D results using 8 m, 4 m and 2 m grid resolutions.

Models comparison time/Attribute IW 8 m e WCA2D 8 m IW 4 m e WCA2D 4 m IW 2 m e WCA2D 2 m

RMSE R2 TPR FDR RMSE R2 TPR FDR RMSE R2 TPR FDR

30 min. 0.20 m 0.59 0.70 0.34 0.13 m 0.86 0.82 0.28 0.10 m 0.93 0.88 0.26
60 min. 0.23 m 0.84 0.81 0.23 0.16 m 0.93 0.89 0.21 0.12 m 0.96 0.92 0.19
90 min. 0.30 m 0.86 0.76 0.18 0.18 m 0.95 0.85 0.12 0.14 m 0.97 0.88 0.08
120 min. 0.31 m 0.86 0.80 0.20 0.18 m 0.96 0.87 0.12 0.12 m 0.98 0.91 0.08
360 min. 0.35 m 0.82 0.78 0.25 0.20 m 0.95 0.88 0.15 0.12 m 0.98 0.93 0.08
720 min. 0.36 m 0.82 0.78 0.25 0.20 m 0.95 0.88 0.15 0.13 m 0.98 0.93 0.09
Max. depth 0.26 m 0.88 0.83 0.20 0.17 m 0.95 0.89 0.17 0.13 m 0.97 0.92 0.16
Max. velocity 0.30 m/s 0.65 e e 0.35 m/s 0.65 e e 0.43 m/s 0.60 e e

M. Guidolin et al. / Environmental Modelling & Software 84 (2016) 378e394390

Flood Analysis Cellular Automata

and the DEM resolution is 5 m. The original problem specifies 6
output points. Fig. 8 shows the water levels versus time (left col-
umn) and velocity versus time (right column) at points 1, 5, and 6,
see Fig. 6(b). The results obtained by the WCA2D model with both
values of slope tolerance are in good agreement with the IW results.
However, there is a small discrepancy inwater level compared with
the IW results during the drying phase. The problem during the
drying phase of the WCA2D model is more noticeable on the ve-
locity plots where there are some visible oscillations at points 1 and
5 and large oscillations at point 6. The problem during the drying
phase is caused by the lack of momentum terms in the WCA2D and
by the use of a non-optimal time step during this phase, i.e., it being
too large. In order to minimise the oscillations, it could be possible
to reduce the time step by changing the slope tolerance. However,
this would have a negative impact on performance. The points 5
and 6 in Fig. 6 are at the same distance from the inflow location,
thus the resulting hydrographs should be the same in Fig. 8. The
WCA2D model shows a small difference in the water levels be-
tween these two points (in the order of millimetres). This difference
is more visible in the velocity plots. Thus, in the WCA2D model,
there is a small asymmetry in the spread of the flow, which is due to
the way that the intercellular-volume transfer is decoupled
directionally.

The EAT8a test consists of an approximately 0.4 km by 0.96 km
urban area in Glasgow, UK. The boundary conditions involve two
sources, a uniformly distributed rainfall and an inflow from a point
source (sewer overflow) in the top left corner of Fig. 6(c); the
catchment is 100% impervious. The DEM resolution was 2 m and
two Manning's roughness values were used: 0.02 (m!1/3s) for road
and pavement, 0.05 (m!1/3s) elsewhere. The original problem
specifies 9 output points. Fig. 9 shows the water level (left column)
and velocity hydrograpshs (right column) in the ponding areas of
points 1 and 3 and in the fast flow areas of points 2 and 6 located in
the road, see Fig. 6(c). The water level results obtained by the

WCA2Dmodel with slope tolerance s¼ 0.1% are in good agreement
with IW. In the fast flow areas of point 2 and 6, the WCA2D pre-
dicted a faster flood wave than IW; this is more visible in the
temporal plots of the velocity. Some oscillations are observed in the
velocity predicted by the WCA2D in points 1 and 3. When a larger
slope tolerance is used in the WCA2D, s ¼ 0.528%, there are some
small visible differences in the water level results; mainly at point 1
where the level was overpredicted after the peaks. In the case of the
predicted velocities, the use of larger time steps caused some extra
oscillations during the drying phase as shown at point 2.

Table 3 shows the run times for the three EA benchmark sim-
ulations for the twomodels on both MC and GPU executions. When
compared to IW, the WCA2D run times were shorter for the EAT2
benchmark (for both MC and GPU executions) and also when the
fine tolerance was used. In the case of the EAT4, the computational
performance obtained by the WCA2D was comparable to the IW
when a large tolerance value were used; the MC performance of
WCA2Dwas not as good as in the first test case due to the particular
characteristics of the EAT4 problem, i.e., the entirely flat terrain and
a fast moving front. The WCA2D is a diffusive-like model which
ignores any inertia terms and momentum conservation. Thus it
needs to use very small time steps to move enough water between
cells through the flat plane to reproduce the front. This increase in
the number of steps had a large impact on the computational
performance of the model.

In the case of the EAT8a, the run-times obtained by the WCA2D
were slightly shorter than those obtained by the IW when the
simulation was executed using a small tolerance value. When the
WCA2D was executed using a large tolerance value the run times
were significantly faster than the IW, over 4 times in the case of
GPU execution. This test case represented a good indicator of the
possible computational performance of the WCA2D model in a
typical urban flood scenario even when the case study size is
small.

Fig. 6. The DEM map of the EAT2 (a), EAT4 (b) and EAT8a (c) problems; figures taken from (N!eelz and Pender, 2013).

M. Guidolin et al. / Environmental Modelling & Software 84 (2016) 378e394386

than the central cell, which may cause oscillations. To minimise
that problem, the central cell is considered to retain a fraction of the
total intercellular-volume transferred. This is achieved by adding
the minimum available storage volume to the total available stor-
age volume, i.e., this minimum represents the weight of the central
cell, for weight computing. Fig. 2 shows an example of how the
weights are computed. This step is described by the following
equation:

wi ¼
DV0;i

DVtot þ DVmin
; w0 ¼ DVmin

DVtot þ DVmin
ci2f1…mg:

(6)

where, wi is the weight of the ith cell.
The total intercellular-volume, i.e., the volume of water that

leaves the central cell, differs from the total available storage vol-
ume and it is calculated by Eq. (11) which takes the minimal value
between three different terms.

In the first term, the total intercellular-volume is limited by the
amount of water that exists in the central cell. In the second term of
the equation, a physically based limitation is imposed on the total
intercellular-volume by using the critical flow equation and the
Manning's formula:

vcrt ¼
ffiffiffiffiffiffi
gd

p
(7)

vman ¼ 1
n
R

2
3S

1
2 (8)

where g (m s#2) is the gravitational acceleration, d (m) is the water
depth in the cell, vcrt (ms#1) is the critical flow velocity, n is the
Manning's roughness coefficient (m#1/3s), R (m) is the hydraulic
radius and S is the absolute value of the hydraulic gradient (#), vman
(ms#1) is the cross-sectional average velocity.

Considering a typical square grid approach, the critical flow
condition equation and theManning's formulawould be computed,
on average, twice per central cell visited, with the outflow in each
Cartesian direction. These equations are computationally expensive
since they use the less efficient power and square root operations.
By reducing the number of times Eqs. (7) and (8) are computed, the
model performance can be significantly improved. The WCA2D
uses, Eqs. (7) and (8) to calculate the maximum permissible inter-
cellular velocity from the central cell into a neighbour cell, and thus
the maximum intercellular-volume. The neighbour cell to receive
this maximum volume of water is the cell with the largest weight.
Therefore, the total intercellular-volume is limited by the value
derived from the maximum individual intercellular-volume
divided by the maximum weight. The intercellular-volume of the
other downstream cells, i.e., with smaller weights, is limited by the
ratio between their individual weights and the maximum weight.

Thus, Eqs. (7) and (8) are computed only once per central cell
visited using this weighting system.

In the third term of Eq. (11), the total intercellular volume to
leave the central cell is limited by the minimum available storage
volume DVmin plus the total intercellular-volume Itot that left the
cell at the time step t, which is determined during the previous
time step iteration. The minimum volume DVmin is used to limit
oscillations that may occur when a neighbour cell receives water
from more than one cell, which results in the water level being
higher than the central cell's in the next time step. The value Itot is
used to avoid large differences in the total amount of transferred
volume between steps and it is computed using Eq. (11).

The total intercellular-volume is computed using the following
equations:

vM ¼ min

(
ffiffiffiffiffiffiffiffi
d0g

p
;
1
n
d

2
3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dl0;M
Dx0;M

s)

(9)

IM ¼ vM d0Dt DeM (10)

ItþDt
tot ¼ minð d0A0; IM =wM;DVmin þ ItotÞ (11)

where,M is the index of the neighbour cell with the largest weight,
vM (m/s) is the maximum permissible intercellular velocity from
the central cell into the neighbour cell with the largest weight, Dl0,M
(m) is the difference in water level between the central cell and the
cell with the largest weight (this might not be the maximum dif-
ference in water level between all the downstream cells), Dx0,M (m)
is the distance between the centre of the central cell and the centre
of cell with the largest weight, d0 (m) is the water depth in the
central cell, IM (m3) is the maximum intercellular-volume achiev-
able into the neighbour cell with the largest weight, Dt (s) is the
time step, DeM (m) is the length of a cell edge with the largest
weight, A0 (m2) is the area of the central cell, wM is the maximum
computed weight in the neighbourhood, and ItþDt

tot (m3) is the total
intercellular-volume that will leave the central cell at time t þ Dt.

The final step is to compute the intercellular-volume of each
downstream cell, by multiplying the weight of the cell with the
total volume of water transferred. This is achieved by the following
equation, where ItþDt

i (m3) is the intercellular-volume of the ith cell
at time t þ Dt:

ItþDt
i ¼ wi I

tþDt
tot ci2f1…mg: (12)

2.2. Depth updating and total intercellular-volume computation

In the WCA2D model, the updating of the water depth is ach-
ieved by simply subtracting the intercellular-volume of the neigh-
bour cells from the water depth of the previous time step. Given
that the total intercellular-volume from a cell is limited by the
amount of water available in the cell itself as in the first term of Eq.
(11), the total mass within the computing domain is always
conserved between time steps. Furthermore, thewater depth of the
next time step is updated with any lateral inflow or outflow (e.g.,
rainfall and infiltration). The following equation is used to update
the water depth:

dtþDt
o ¼ dt0 #

Pm
i¼1I

tþDt
i

A0
þ
DVin

0
A0

#
DVout

0
A0

(13)

where m is the number of cells in the neighbourhood, ItþDt
i (m3) is

the intercellular-volume of the ith cell, A0 (m2) is the area of the

Fig. 2. Example of intercellular-volume computation. The dark shading represents the
ground level in a cell, the wave pattern represents the amount of water available in a
cell.

M. Guidolin et al. / Environmental Modelling & Software 84 (2016) 378e394 381

Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Ghimire et al 2013

A weighted cellular automata 2D inundation model for rapid flood analysis. Guidolin et al 2016

The Flood Fill Cellular Automata
We will use a much simpler model! We have water and impassible barriers.

Each step each square splits its water evenly between all nearby cells

The key CA trick: Each square calculates simultaneously.

The Flood Fill Cellular Automata
Total cells:

Weight change:

Total cells:

Weight change:

The Flood Fill Cellular Automata

Conway’s Game of Life Rules
Developed by John Conway in 1970

A mostly academic Turing Complete simulation

The ruleset looks at more squares but has easier rules for the final values

A ‘simple’ but very interesting computational model

Conway’s Game of Life Rules
A ‘cell’ is either alive or dead and has at most 8 neighbors around it

Conway’s Game of Life Rules

1. Any live cell with fewer than two live neighbors dies.

2. Any live cell with two or three live neighbors lives.

3. Any live cell with more than three live neighbors dies

4. Any dead cells with exactly three live neighbors becomes a live cell.

All cells in a matrix update at the same time according to the following:

Conway’s Game of Life Rules
1. Any live cell with fewer than two live neighbors dies.

Conway’s Game of Life Rules
1. Any live cell with fewer than two live neighbors dies.

Conway’s Game of Life Rules
2. Any live cell with two or three live neighbors lives.

Conway’s Game of Life Rules
3. Any live cell with more than three live neighbors dies

Conway’s Game of Life Rules
4. Any dead cells with exactly three live neighbors becomes a live cell.

Conway’s Game of Life
A fun demo version of the game: https://playgameoflife.com/

Note: Every cell is updated at the same time

https://playgameoflife.com/

For next time: Modifying 2D lists safely
We want to simultaneously update every square in a matrix…

The easiest way to do this is to make a copy of the matrix.

