
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

January 31, 2024

File I/O and Efficiency

Exam 1
Exams will be proctored by the CBTF: https://cbtf.engr.illinois.edu/

(That link will have a link to Prairietest, where you can sign up for exam 0)

Reservations open on February 1st

You must take the exam sometime between 2/13 and 2/15!

See website for expected content:

https://courses.grainger.illinois.edu/cs277/sp2024/exams/

https://cbtf.engr.illinois.edu/
https://courses.grainger.illinois.edu/cs277/sp2024/exams/

Learning Objectives

Introduce the concept of asymptotic efficiency

Compare list implementations using big O

Introduce list implementation strategies

Review file I/O in Python

Python List
There are many implementations of lists in Python. Here are three*:

myList = [1, 2, 3, 4, 5]

print(myList)

print(len(myList))

print(myList[2])

1
2
3
4
5
6
7
8
9

myTuple = (1, 2, 3, 4,
5)

print(myTuple)

print(len(myTuple))

print(myTuple[2])

1
2
3
4
5
6
7
8
9

import numpy as np
myNP =
np.array([1,2,3,4,5])

print(myNP)

print(len(myNP))

print(myNP[2])

1
2
3
4
5
6
7
8
9

Why are there so many different implementations?
Lets find out together in our first class mini-project!

P1) Generate random datasets

P2) Code various analysis functions on datasets using lists

P3) Measure efficiency of P2 using varying size datasets from P1

Mini-Project 0: Random Data Generation

Practice string and list manipulations in the context of file I/O

Introduce seeded random data generation

Introduce how to measure runtime efficiency in Python

Investigate the efficiency of different Python implementations of lists

Learning Objectives:

Programming Toolbox: File I/O
readableFile = open('inputFile.txt', 'r')

writableFile = open('outputFile.txt', 'w')

carefulWriteFile = open('outputFile.txt', 'x')

appendableFile = open('outputFile.txt', 'a')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Programming Toolbox: File I/O

Approach 1

readableFile = open('inputFile.txt', 'r')

fileData = readableFile.read()

readableFile.close()

Approach 2

with open('inputFile.txt', 'r') as myFile:
 fileData = myFile.read()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Which approach do you prefer?

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

0123456789
Line 2

1
2

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4
Hello World!

1
2
3
4
5
6
7

temp2.txt

0123456789
Line 2

1
2

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4
Hello World!
Hello World!

1
2
3
4
5
6
7
8

temp2.txt

0123456789
Line 2

1
2

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt') as myFile:
 inList = myFile.readlines()
print(inList)

myFile = open('data/temp2.txt')
for i in range(10):
 print("Line Content: {}".format(myFile.readline()))
myFile.close()

with open('data/temp1.txt') as myFile:
 print(myFile.read())

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

0123456789
Line 2

1
2
3
4
5
6

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt') as myFile:
 inList = myFile.readlines()
print(inList)

myFile = open('data/temp2.txt')
for i in range(10):
 print("Line Content: {}".format(myFile.readline()))
myFile.close()

with open('data/temp1.txt') as myFile:
 print(myFile.read())

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

['0123456789\n', 'Line 2']
Line Content: 0

Line Content: 1

Line Content: 2

Line Content: 3

Line Content: 4

Line Content:
Line Content:
Line Content:
Line Content:
Line Content:
0123456789
Line 2

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

0123456789
Line 2

1
2
3
4
5
6

temp1.txt

Programming Toolbox: File I/O

myFile = open('data/temp2.txt')
for i in range(6):
 print("Line Content: {}".format(myFile.readline().strip()))
myFile.close()

with open('data/temp2.txt') as myFile:
 for line in myFile:
 print(line.strip())

1
2
3
4
5
6
7
8

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

str.strip() will remove whitespace from the string.

Line Content: 0
Line Content: 1
Line Content: 2
Line Content: 3
Line Content: 4
Line Content:
0
1
2
3
4

Programming Toolbox: File I/O

tmp = "1, 2, 3"
tmp2 = "1,2,3"

x = tmp.split(",")
y = tmp2.split(",")
for i in range(len(x)):
 if x[i]!=y[i]:
 print("No match!", x[i], y[i])
 else:
 print("Match!")

1
2
3
4
5
6
7
8
9

10
11
12

str.strip() will remove whitespace from the string.

Programming Toolbox: File I/O
Four ways to open a file: read, write, carefulWrite, append

Three ways to read a file: all lines, line-by-line, text as string

Writing to file: String formatting is key, file writes are literal copies

Python File I/O

Whats wrong here:
with open('dataFile2.txt','w') as myFile:
 data = myFile.readlines()

for line in data:
 print(line)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Programming Practice: File I/O
Given an input filename, write a new file that is the same file with
reversed lines.

Mini-Project 0: Random Data Generation

Practice string and list manipulations in the context of file I/O

Introduce seeded random data generation

Introduce how to measure runtime efficiency in Python

Investigate the efficiency of different Python implementations of lists

Learning Objectives:

What do we care about when we write code?
Time Efficiency (What is the execution speed of our code?)

Memory Efficiency (How much memory does our code use?)

Coding Efficiency (How much time does it take us to write? Others to read?)

Coding Efficiency: Hard to measure
Student self-report total assessment time (surveys)

Prairielearn records total time per assignment

Exams test your ability to complete assessments in capped time

Python Toolbox: Tracemalloc (Memory Efficiency)
tracemalloc.start()

tracemalloc.get_traced_memory()

tracemalloc.reset_peak()

Python Toolbox: Tracemalloc (Memory Efficiency)
import tracemalloc

tracemalloc.start()

#23978913 24000645
#import pandas as pd

605 10974
current, peak = tracemalloc.get_traced_memory()

print(current, peak)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

How do we measure time efficiency?
for i in range(n):
 time.sleep(30)
 doStuff()

1
2
3
4

for i in range(n):
 for j in range(n):
 doStuff()

1
2
3
4

for i in range(n):
 for j in range(n/2):
 doStuff()

1
2
3
4

for i in range(n):
 for j in range(n):
 doStuff()

1
2
3
4

How do we measure time efficiency?

Idea 1: Measure time using physical time

Python Toolbox: Timeit
Timeit.repeat(setup, stmt, repeat, number))

setup

stmt

repeat

number

Python Toolbox: Timeit
def doStuff_A(n):
 total = 0
 for i in range(n):
 for j in range(n):
 total+=j

def doStuff_B(n):
 total = 0
 for i in range(n):
 for j in range(int(n/2)):
 total+=j

SETUP_CODE = '''
from __main__ import doStuff_A, doStuff_B'''

TEST_CODE= '''
doStuff_A(1000)
'''

myTime = timeit.repeat(setup=SETUP_CODE,
stmt=TEST_CODE, repeat=5, number=10)
print(myTime)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Python Toolbox: Timeit
Timeit.default_timer()

Returns the current time as fractional seconds.

Includes time elapsed during sleep or system-wide processes

Timeit.perf_counter_ns()

Returns the current time as nanoseconds.

Includes time elapsed during sleep or system-wide processes

Python Toolbox: Timeit
import random
import time

def timeWaste():
 stall_time = random.randint(1, 5)
 print("Wasting {} time".format(stall_time))
 time.sleep(stall_time)

start = timeit.default_timer()
for i in range(5):
 timeWaste()
end = timeit.default_timer()

print("I wasted {} time total.".format(end-start))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Problem 1: Hardware complexity
Time x1 billion Like

L1 cache reference 0.5 seconds Heartbeat 💓

Branch mispredict 5 seconds Yawn 😲

L2 cache reference 7 seconds Long yawn 😲 😲 😲

Mutex lock/unlock 25 seconds Make coffee ☕

Main memory reference 100 seconds Brush teeth

Compress 1K bytes 50 minutes TV show 📺

Send 2K bytes over 1 Gbps network 5.5 hours (Brief) Night's sleep 🛌

SSD random read 1.7 days Weekend

Read 1 MB sequentially from memory 2.9 days Long weekend

Read 1 MB sequentially from SSD 11.6 days 2 weeks for delivery 📦

Disk seek 16.5 weeks Semester

Read 1 MB sequentially from disk 7.8 months Human gestation 🐣

Above two together 1 year 🌍 ☀

Send packet CA->Netherlands->CA 4.8 years Ph.D. 🎓

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

Problem 2: Algorithm Complexity

There would have been a time for such a wordT:
P: word

word word word

Problem 2: Algorithm Complexity

There would have been a time for such a wordT:
P: word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word

Problem 2: Algorithm Complexity

bbbbbbbT:
P: aaa

aaa
 aaa
 aaa
 aaa
 aaa

bbbbbbbT:
P: bbb

bbb
 bbb
 bbb
 bbb
 bbb

Problem 3: Scaling Performance Measures

The problem with measuring time…

1) The difference between our best case and worst case can be significant

2) Measuring actual time can be messy — computers handling multiple
processes at the same time. Hardware differences exist between machines

3) We are most interested in the performance on large datasets, which
are significantly more difficult to measure due to (1) and (2)

Big-O notation

n, size of input

op
er

at
io

ns

 is iff such that f(n) O(g(n)) ∃c, k f(n) ≤ cg(n) ∀n > k

Constant Time, O(1)

n, size of input

op
er

at
io

ns

def constant(n):
 ops = 0
 for i in range(10):
 ops+=1
 return ops

print(constant(5))
print(constant(9001))

1
2
3
4
5
6
7
8

Logarithmic Time, O(log n)
import math
def logarithmic(n):
 ops = 0
 for i in range(int(math.log2(n))):
 ops+=1
 return ops

print(logarithmic(5))
print(logarithmic(9001))

1
2
3
4
5
6
7
8
9

n, size of input

op
er

at
io

ns

Linear Time, O(n)
def linear(n):
 ops = 0
 for i in range(n):
 ops+=1
 return ops

print(linear(5))
print(linear(9001))

1
2
3
4
5
6
7
8

n, size of input

op
er

at
io

ns

Quadratic Time, O(n2)
Quadratic Time
def quadratic(n):
 ops = 0
 for i in range(n):
 for j in range(n):
 ops+=1
 return ops

print(quadratic(5))
print(quadratic(9001))

1
2
3
4
5
6
7
8
9

10

n, size of input

op
er

at
io

ns

Big-O Complexity Classes

O(log n)

O(n)

O(n2)

O(2n)

O(1)

Big-O Complexity Classes

O(log n)

O(n)

O(n2)

O(2n)

O(1)

Identifying the Big O of an algorithm

1) Label the key factors that drive algorithm performance

2) Write out the worst-case performance for each step

3) Identify (or reduce to) the largest terms for each factor

Big O Practice: Pattern Matching

There would have been a time for such a wordT:
P: word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word

Big O Practice: Simplifying efficiency

What is the big O for the following functions?

a(n) = n4 + 50n + 10

b(n) = 500nlog n + 50n + log(n)

c(n) = n3 + 3n! + 12

d(n) = n2 + nlog n

Big O Practice: Reading code
def doStuff(inList1, inList2):

 c1 = 0
 for i in inList1:
 c1+=1

 c2 = 0
 for v1 in inList1:
 for v2 in inList2:
 c2+=1

 return c1, c2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Big O Practice: Reading code
def doStuff2(inList):
 ops = 0
 size = len(inList)
 while size > 0:
 size = int(size / 2)
 ops+=1
 return ops

def doStuff3(inList1, inList2):
 ops = 0
 for i in inList1:
 ops+= doStuff2(inList2)
 return ops

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Big O Practice: Reading code
def convert_1D_to_2D(inList, rowSize):
 listLen = len(inList)
 numRows = math.ceil(listLen/rowSize)

 outList = []
 count = 0

 ops = 0
 for i in range(numRows):
 tempList = []

 for j in range(rowSize):

 if count >= listLen:
 tempList.append(-1)
 else:
 tempList.append(inList[count])

 ops+=1
 count+=1

 outList.append(tempList)

 print(ops)
 return outList

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Next time: List Implementations and Efficiency
We’ve seen:

Why lists are an important fundamental data structure

The necessary functions for a list (the Abstract Data Type)

How to measure code performance

How to create and use lists using built-in methods

Understanding the actual implementation will:

Allow us to practice programming and Big O

Allow us to justify design decisions involving lists

