
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

January 29, 2024

Lists and Random Data

About (https://cs.illinois.edu/research/undergraduate-research/srp)
This hybrid program will take place from June to August (exact dates TBD). Students who
participate in the summer program engage with a faculty and their research group as well as
attend weekly 'Lunch and Learn' sessions which focus on various professional development
topics.

This is not a paid program – it serves as a ‘common app’ for matching students to faculty and a
support and social structure for undergraduate students over the summer. Actual hiring is still
handled directly by faculty individually.

Eligibility [Rolling acceptance – no fixed deadline]
Open to all undergraduates (Illinois CS and external), iCan students, and local high school
students.

GRAINGER ENGINEERING

CS Summer Research Program

COMPUTER SCIENCE

https://cs.illinois.edu/research/undergraduate-research/srp

About (https://cra.org/cra-wp/dreu/)
A highly selective program that matches students with a faculty mentor for a summer research experience at
the faculty mentor’s home institution. DREU interns will receive $700 per week for research (up to 10 weeks),
and will be directly involved in a research project and interact with graduate students and professors on a
daily basis. This experience is invaluable for those who are considering graduate school; DREU will provide a
close-up view of what graduate school is really like and increase interns’ competitiveness as an applicant for
graduate admissions and fellowships.

Eligibility [Student and mentor application deadline February 15th]
Students who are pursuing an undergraduate degree at an institution in the U.S. or its territories. International
Students may apply, however, most of the funds for the DREU program are restricted to US citizens and
permanent residents, so the number of non-US student participants will be limited. Priority will be given to
persons from populations underrepresented in computing including women, Black/African American, Native
American/Alaskan Native/ Pacific Islander, Hispanic/Latinx, LGBTQAI+, Persons with Disabilities, and
Veterans.

GRAINGER ENGINEERING

CRA-WP Distributed Research Experiences for Undergraduates (DREU)

COMPUTER SCIENCE

https://cra.org/cra-wp/dreu/

About (https://isur.engineering.illinois.edu/darin-butz-foundation-research-scholars/)
DaRin Butz Foundation Research Scholars conduct research in the areas of computer science, aerospace,
electrical, computer, materials science, nuclear engineering, physics, or astronomy. Scholars will work with
faculty mentors who will supervise, guide, and instruct them on their research during the course of the project.
They are expected to do research 30–35 hours per week for 10 weeks in summer. Scholars must take ENG
199 UGR in the fall and will present their work in the Fall Engineering Research Fair or the annual ISUR
poster expo in the spring semester.

Eligibility [Student application deadline March 31st]
Must be:
- A University of Illinois woman undergraduate in the Grainger College of Engineering
- U.S. citizen or permanent resident
- Rising sophomore, junior, or senior majoring in CS, aerospace, electrical, computer, materials science,

nuclear engineering, physics, or astronomy with a GPA of 3.0 or higher

GRAINGER ENGINEERING

DaRin Butz Foundation Research Scholars

COMPUTER SCIENCE

https://isur.engineering.illinois.edu/darin-butz-foundation-research-scholars/

About (https://www.siam.org/students-education/programs-initiatives/
siam-simons-undergraduate-summer-research-program)
Society for Industrial and Applied Mathematics (SIAM) is pleased to announce we are accepting applications
for the SIAM-Simons Undergraduate Summer Research Program, which will provide research, networking,
and mentorship opportunities to U.S. students from underrepresented groups. Participating students will
receive a stipend of $1,000/week and will have their housing, meals, and travel expenses paid. This is an
amazing opportunity for students to immerse themselves in applied math, computational science, and/or data
science research while simultaneously participating in professional development and community-building
activities designed to foster a strong sense of belonging.
Eligibility [Student application deadline February 7th]
Must be a U.S. citizen or permanent resident and an undergraduate student enrolled in a US-based college
or university in September 2024. Note that while all projects will have an applied math and/or computational
science approach, students do not need to have an applied math background to apply. Projects appropriate
for students at all undergraduate levels will be available, and prior research experience is not required.

GRAINGER ENGINEERING

SIAM-Simons Undergraduate Summer Research Program

COMPUTER SCIENCE

https://www.siam.org/students-education/programs-initiatives/siam-simons-undergraduate-summer-research-program
https://www.siam.org/students-education/programs-initiatives/siam-simons-undergraduate-summer-research-program
https://www.siam.org/students-education/programs-initiatives/siam-simons-undergraduate-summer-research-program

Reminder: First two labs due today!
If you need an extension, email the request and reason why.

Labs are meant to be completable in the lab section (or shortly after)

Currently labs are due the Monday after they are released

CS 277 Plagiarism Policy
Github Co-pilot and chatGPT can probably pass this class.

Using these tools is against the course policy and will hurt you on exams

The labs in CS 277 are designed to give you programming practice

The MPs in CS 277 are designed to be data science explorations

It also hurts your peers by giving a false signal on assessments

Learning Objectives

Practice using built-in Python lists

Introduce file I/O in Python

Introduce random() package

Motivate the importance of the list data structure

Lists are a great way to store data

Lists are a great way to store data structures

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

5

15 9

25

4

6

7 13

1116 1214

4 5 6 15 9 7 20 16 25 14 12 11

1 2 3 4 5 6 7 8 9 10 11 120 13 1514

Lists are a great way to store data structures

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

Lists are a great way to store data structures

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅
10 ∅

Greg
A
∅

Bre1
A-

Be1y
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

0
0
1
0
0
1
0
1
0
0

H = {h1, h2, . . . , hk}

List Abstract Data Type
A list is an ordered collection of items

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable

Can be localized or distributed in memory

List Abstract Data Type
A minimally functional list must have the following functions:

Constructor: Create a new empty list

Insert: Add an item to a list

Delete: Remove an item from the list

Index: Look up the value at a specific index

Size()**: Get the size of the list

Lists in Python: Constructor
There are many ways to construct (or initialize) a Python list.

l1 = [1, 2, 3]

l2 = list((3, 4, 5))

l3 = l1+l2

l4 = l1.copy()

l5 = l1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Lists in Python: Insert
Insert() tries to add the object at a particular index in the list

l1 = []

l1.insert(2, "A")

l1.append("C")

l1.insert(1, "B")

l1.insert(5, "D")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Append() adds the item to the end of the list

Lists in Python: Remove
Remove() removes the first instance of the object

l1 = [1,2,1,3,1,4]

l1.remove(7)

l1.remove(1)

x = l1.pop()

y = l1.pop(2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Remove() crashes if the object doesn’t exist!

Pop() removes and returns the object at a specific index (default is last)

Lists in Python: Index
Index() returns the index of the first matching item in the list

l1 = [1,2,1,3,1,4]

print(l1.index(1))

print(l1.index(5))

print(l1.index(4))

print(l1[0])

print(l1[10])

print(l1[-1])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

__getItem__(), [] returns the index of the first matching item in the list

Lists in Python: Size
len() is not a class method but works for most forms of a list in Python

l1 = [1,2,1,3,1,4]

print(len(l1))

1
2
3
4
5
6
7
8

Remember: Python indexing starts at 0

List Abstract Data Type
A minimally functional list must have the following functions:

Constructor:

Insert:

Delete:

Index

Size()**

append(x) insert(i, x)

__init__()

remove(x) pop()

__getitem__() [] index(x)

len(list)

Programming Practice: Lists

def inclass():
 l = [1,2,3,4,5,6]
 x = l.pop()
 l.pop()
 l.pop()
 l.insert(0, x)
 l.append(8)
 l += [1, 2]
 return l

print(inclass())

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

What is the output of the print statement after this function is run?

Programming Practice: Index of Every X
Given a list and a character as input, return a list containing the index of
every instance of that character.

Programming Practice: Index of Every X
Given a list and a character as input, return a list containing the index of
every instance of that character.

Now lets remove every third value from the output list.

Python List
There are many implementations of lists in Python. Here are three*:

myList = [1, 2, 3, 4, 5]

print(myList)

print(len(myList))

print(myList[2])

1
2
3
4
5
6
7
8
9

myTuple = (1, 2, 3, 4,
5)

print(myTuple)

print(len(myTuple))

print(myTuple[2])

1
2
3
4
5
6
7
8
9

import numpy as np
myNP =
np.array([1,2,3,4,5])

print(myNP)

print(len(myNP))

print(myNP[2])

1
2
3
4
5
6
7
8
9

Why are there so many different implementations?
Lets find out together in our first class mini-project!

P1) Generate random datasets

P2) Code various analysis functions on datasets using lists

P3) Measure efficiency of P2 using varying size datasets from P1

Mini-Project 0: Random Data Generation

Practice string and list manipulations in the context of file I/O

Introduce seeded random data generation

Introduce how to measure runtime efficiency in Python

Investigate the efficiency of different Python implementations of lists

Learning Objectives:

Programming Toolbox: File I/O
readableFile = open('inputFile.txt', 'r')

writableFile = open('outputFile.txt', 'w')

carefulWriteFile = open('outputFile.txt', 'x')

appendableFile = open('outputFile.txt', 'a')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Programming Toolbox: File I/O

Approach 1

readableFile = open('inputFile.txt', 'r')

fileData = readableFile.read()

readableFile.close()

Approach 2

with open('inputFile.txt', 'r') as myFile:
 fileData = myFile.read()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Which approach do you prefer?

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

0123456789
Line 2

1
2

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4
Hello World!

1
2
3
4
5
6
7

temp2.txt

0123456789
Line 2

1
2

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt', 'x') as myFile:
 for i in range(10):
 myFile.write(str(i))
 myFile.write("\n")
 myFile.write("Line 2")

myFile = open('data/temp2.txt', 'w')
for i in range(5):
 myFile.write(str(i) + "\n")
myFile.close()

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

with open('data/temp2.txt', 'a') as myFile:
 myFile.write("Hello World!\n")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4
Hello World!
Hello World!

1
2
3
4
5
6
7
8

temp2.txt

0123456789
Line 2

1
2

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt') as myFile:
 inList = myFile.readlines()
print(inList)

myFile = open('data/temp2.txt')
for i in range(10):
 print("Line Content: {}".format(myFile.readline()))
myFile.close()

with open('data/temp1.txt') as myFile:
 print(myFile.read())

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

0123456789
Line 2

1
2
3
4
5
6

temp1.txt

Programming Toolbox: File I/O
with open('data/temp1.txt') as myFile:
 inList = myFile.readlines()
print(inList)

myFile = open('data/temp2.txt')
for i in range(10):
 print("Line Content: {}".format(myFile.readline()))
myFile.close()

with open('data/temp1.txt') as myFile:
 print(myFile.read())

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

['0123456789\n', 'Line 2']
Line Content: 0

Line Content: 1

Line Content: 2

Line Content: 3

Line Content: 4

Line Content:
Line Content:
Line Content:
Line Content:
Line Content:
0123456789
Line 2

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

0123456789
Line 2

1
2
3
4
5
6

temp1.txt

Programming Toolbox: File I/O

myFile = open('data/temp2.txt')
for i in range(6):
 print("Line Content: {}".format(myFile.readline().strip()))
myFile.close()

with open('data/temp2.txt') as myFile:
 for line in myFile:
 print(line.strip())

1
2
3
4
5
6
7
8

0
1
2
3
4

1
2
3
4
5
6

temp2.txt

str.strip() will remove whitespace from the string.

Line Content: 0
Line Content: 1
Line Content: 2
Line Content: 3
Line Content: 4
Line Content:
0
1
2
3
4

Programming Toolbox: File I/O

tmp = "1, 2, 3"
tmp2 = "1,2,3"

x = tmp.split(",")
y = tmp2.split(",")
for i in range(len(x)):
 if x[i]!=y[i]:
 print("No match!", x[i], y[i])
 else:
 print("Match!")

1
2
3
4
5
6
7
8
9

10
11
12

str.strip() will remove whitespace from the string.

Programming Toolbox: File I/O
Four ways to open a file: read, write, carefulWrite, append

Three ways to read a file: all lines, line-by-line, text as string

Writing to file: String formatting is key, file writes are literal copies

Python File I/O

Whats wrong here:
with open('dataFile2.txt','w') as myFile:
 data = myFile.readlines()

for line in data:
 print(line)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Programming Practice: File I/O
Given an input filename, write a new file that is the same file with
reversed lines.

Mini-Project 0: Random Data Generation

Practice string and list manipulations in the context of file I/O

Introduce seeded random data generation

Introduce how to measure runtime efficiency in Python

Investigate the efficiency of different Python implementations of lists

Learning Objectives:

Programming Toolbox: Synthetic Datasets

Meta-Sim: Learning to Generate Synthetic Datasets
http://nv-tlabs.github.io/meta-sim

Amlan Kar1,2,3 Aayush Prakash1 Ming-Yu Liu1 Eric Cameracci1 Justin Yuan1

Matt Rusiniak1 David Acuna1,2,3 Antonio Torralba4 Sanja Fidler1,2,3∗

1NVIDIA 2University of Toronto 3Vector Institute 4 MIT

Abstract

Training models to high-end performance requires avail-

ability of large labeled datasets, which are expensive to get.

The goal of our work is to automatically synthesize labeled

datasets that are relevant for a downstream task. We pro-

pose Meta-Sim, which learns a generative model of syn-

thetic scenes, and obtain images as well as its correspond-

ing ground-truth via a graphics engine. We parametrize

our dataset generator with a neural network, which learns

to modify attributes of scene graphs obtained from proba-

bilistic scene grammars, so as to minimize the distribution

gap between its rendered outputs and target data. If the

real dataset comes with a small labeled validation set, we

additionally aim to optimize a meta-objective, i.e. down-

stream task performance. Experiments show that the pro-

posed method can greatly improve content generation qual-

ity over a human-engineered probabilistic scene grammar,

both qualitatively and quantitatively as measured by perfor-

mance on a downstream task.

1. Introduction

Data collection and labeling is a laborious, costly and
time consuming venture, and represents a major bottleneck
in most current machine learning pipelines. To this end,
synthetic content generation [6, 36, 11, 34] has emerged as
a promising solution since all ground-truth comes for free
– via the graphics engine. It further enables us to train and
test our models in virtual environments [38, 8, 48, 22, 41]
before deploying to the real world, which is crucial for both
scalability and safety. Unfortunately, an important perfor-
mance issue arises due to the domain gap existing between
the synthetic and real-world domains.

Addressing the domain gap issue has led to a plethora
of work on synthetic-to-real domain adaptation [17, 27, 54,
10, 43, 34, 45]. These techniques aim to learn domain-
invariant features and thus more transferrable models. One
of the mainstream approaches is to learn to stylize syn-

∗Correspondence to amlan@cs.toronto.edu, sfidler@nvidia.com

Distribution
Transformer

Generated synthetic dataset

Real dataset

road

lane lane

sidewalk

person

tree

car car

location
height
pose

Probabilistic
grammar

∼ distribution ???

Need a labeled
dataset to train

my network!

Scientist

Meta-Sim
Use my trained network on real data!

Figure 1. Meta-Sim is a method to generate synthetic datasets that

bridge the distribution gap between real and synthetic data and are

optimized for downstream task performance

thetic images to look more like those captured in the real-
world [17, 27, 51, 30, 18]. As such, these models address
the appearance gap between the synthetic and real-world
domains. They share the assumption that the domain gap is
due to the differences that are fairly low level.

Here, we argue that domain gap is also due to a content

gap, arising from the fact that the synthetic content (e.g.
layout and types of objects) mimics a limited set of scenes,
not necessarily reflecting the diversity and distribution of
objects of those captured in the real world. For example,
the Virtual KITTI [11] dataset was created by a group of
engineers and artists, to match object locations and poses
in KITTI [13] which was recorded in Karlsruhe, Germany.
But what if the target city changes to Tokyo, Japan, which
has much heavier traffic and many more high-rise build-
ings? Moreover, what if the downstream task that we want
to solve changes from object detection to lane estimation or
rain drop removal? Creating synthetic worlds that ensure
realism and diversity for any desired task requires signifi-
cant effort by highly-qualified experts and does not scale to
the fast demand of various commercial applications.

In this paper, we aim to learn a generative model of syn-
thetic scenes that, by exploiting a graphics engine, produces
labeled datasets with a content distribution matching that of
imagery captured in the desired real-world datasets. Our
Meta-Sim builds on top of probabilistic scene grammars
which are commonly used in gaming and graphics to cre-
ate diverse and valid virtual environments. In particular, we
assume that the structure of the scenes sampled from the

14551

Meta-Sim: Learning to Generate Synthetic Datasets. A Kar et al. 2019

In silicon models of cancer. Edelman et al. 2010
“In many applications of computers and other electronic devices, there
is a need for a physical source of true random numbers, for example,
in computer simulations of various probabilistic algorithms,
computer games, and, most notably, in possibly randomized
cryptographic algorithms and protocols whose security relies on the
ability to generate unpredictable secret keys and random numbers.”

New Methods for Digital Generation and Postprocessing of Random Data. J.D.J Golic 2006

Performance Analysis of K-Means and K-Medoids Clustering Algorithms
For A Randomly Generated Data Set. T Velmurugan et al 2008

Programming Toolbox: Random.Random()
Python’s random module implements pseudo-random number generators

Random.random()

What does pseudo-random mean? Well try running the following:

Random.seed(1)

Random.random()

Programming Toolbox: Random.Seed()
Python’s random module implements pseudo-random number generators

The values produced are not actually random!

Random.seed(1)

Random.random() 0.13436424411240122

Given a start value, the output is entirely deterministic!

Random.random()

Programming Toolbox: Random.Seed()
Python’s random module implements pseudo-random number generators

The values produced are not actually random!

Given a start value, the output is entirely deterministic!

This is actually quite useful (for us):

1. Total reproducibility

2. Autogradable randomness

3. It’s built-in

Programming Toolbox: Random.RandInt()

Random.randint(min, max)

While most uniform random data generation can be done using random(),
some other functions are useful for specific tasks.

Programming Toolbox: Random.Choice()

Random.choice(list)

While most uniform random data generation can be done using random(),
some other functions are useful for specific tasks.

Programming Toolbox: Random.Sample()

Random.sample(list, num)

While most uniform random data generation can be done using random(),
some other functions are useful for specific tasks.

Programming Toolbox: Random.shuffle()

Random.shuffle(list)

While most uniform random data generation can be done using random(),
some other functions are useful for specific tasks.

Programming Toolbox: Lots more to random
https://docs.python.org/3/library/random.html

https://docs.python.org/3/library/random.html

Programming Practice: Uniform Random
Lets visualize uniform randomness using lists!

Write a function that takes in two numbers, a length and count, and
generates count random variables across length. Instead of storing
the sequence, we will only store the counts assigned to each value.

