
Department of Computer Science

CS 277
Brad Solomon

Algorithms and Data Structures for Data Science

April 29, 2024

Review Day

Please fill out ICES evaluations
You can unofficially test a new system — please fill it out twice!

https://illinois.qualtrics.com/jfe/form/SV_6mOBFJa6ch4XKXc?
rubric=cs&number=277&netid=bradsol

https://illinois.qualtrics.com/jfe/form/SV_6mOBFJa6ch4XKXc?rubric=cs&number=277&netid=bradsol

Review Topics

Traversals

Hashing and Graphs

BST and AVL Trees

Recursion

Coding Practice: Identity Matrix

An identity matrix is a 2D square matrix with 1s across the diagonal

Recursion is when a function calls itself directly or indirectly

Recursion

b

d

c

f

a

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can I reduce my problem to an easier one?

Combining: How can I build my solution from recursive pieces?

When thinking recursively, break the problem into parts:

Programming Toolbox: Recursion

InsertionSort

4 3 6 7 1 1. Assume first value is ‘sorted’

2. Loop through remaining values:

3.Insert value into the ‘sorted’ array

Key trick: Insert by swapping!

Recursive insertionSort (Brainstorm + Code)

0 3 7 5 8 9 2 1 4 6

Base Case:

Recursive Step:

Combining:

Recursive List Partitioning

6 5 4 2 7

1 1 1 1 1

2 3 3 3 1

Using all elements in a list, can we make two lists which have equal sums?

Recursive List Partitioning

6 5 4 2

How would a computer solve this problem?

Recursive List Partitioning

6 5 4 2

How would a computer solve this problem?

6 5 4 2

6 5 4 2

6 5 4 2

6 2 5 4
…

Compute every permutation!

Recursive List Partitioning (Brainstorm)

2 3 7 4 8

Base Case:

Recursive Step:

Combining:

Recursive List Partitioning
Writing code to attempt every possible permutation is tricky with loops.

But its a great example of recursion in action!

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Recursive List Partitioning
Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

6 5 4 2

5 4 2 6

5 4 2 6

Input:

Recursive Calls:

Left Right

Recursive List Partitioning
Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case:

([], [])

([4], []) ([], [4])

([3, 4], []) ([4], [3])

[4, 3, 1]

[3, 1]

[1]

[]

([3], [4]) ([], [3, 4])

([1, 3, 4], [])

([3, 4], [1])

([1, 4], [3])

([4], [1, 3])

([1, 3], [4])

([3], [1, 4])

([1], [3, 4])

([], [1, 3, 4])

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case: When my input list is empty, I have tried every permutation

Recursive List Partitioning (Brainstorm and code)

Combination Step:

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case: When my input list is empty, I have tried every permutation

(Binary) Tree Recursion

X

AS

7

C

2

7

T = None

A binary tree is a tree such that:T

or

T = treeNode(val, TL, TR)

class treeNode:
 def __init__(self, val, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

1
2
3
4
5

class binaryTree:
 def __init__(self):
 self.root = None

1
2
3
4
5

AVL Insertion
If we know our imbalance direction, we can call the correct rotation.

Left Right LeftRightRightLeft

AVL Rotations

A

B

C

A

B

C

C

B

A

Left and right rotation convert sticks into mountains

AVL Rotations

A

B

C

A

C

B

B

A

C

A

C

B

B

C

A

LeftRight (RightLeft) convert elbows into sticks into mountains

Practice your trees!
Practice exams have randomly generated trees for:

Building a tree from scratch (or inserting one node)

Calculating balance and height

Performing traversals

AVL Tree balance calculations

Tree Efficiency

BST AVL Tree

find

insert

delete

traverse

95

7

61

7

9

5

1

6

BST Coding Exercises
Can you write code to implement:

Find

Insert

Remove

Traversals

6

5

3

8

11

9 16

1814

21
121

|V|= n,|E|= m

Expressed as O(f)
Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1* n* 1*

removeVertex(v) n+m n* deg(v)

insertEdge(u, v) 1 1 1*

removeEdge(u, v) m 1
min(deg(u),

deg(v))

getEdges(v) m n deg(v)

areAdjacent(u, v) m 1
min(deg(u),

deg(v))

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Kruskal’s Algorithm
Repeat until |V| - 1 edges found:

Find the minimum edge connecting two unconnected nodes

A

C

B

D

E

1

4
6

2

5
7

3

Prim’s Algorithm
Repeat until |V| - 1 edges found:

Find the minimum edge connecting ‘in’ and ‘out’ group

A

C

B

D

E

1

4
6

2

5
7

3

Graph Coding Exercises
What did mp_algorithms ask you to do?

Read and parse input datasets (text / csv files)

Use NetworkX to build graphs with and without attributes

NetworkX Graph ADT Cheatsheet
Find

Insert

Remove

getVertices() —> list(G.nodes())

getEdges(v) —> G[v]

areAdjacent(u, v) —> G.has_edge(u, v)

insertVertex(v) —> G.add_node(v)

insertEdge(u, v) —> G.add_edge(u, v)

removeVertex(v) —> G.remove_node(v)

removeEdge(u, v) —> G.remove_edge(u, v)

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

Bre:
A-

Be:y
B

Bob
B+
∅

∅

∅

…

K, V
K, V
K, V

Hash Tables
• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Load Factor () can be infinite in sizeα = n/m

Load Factor () must be between 0 and 1 (not including 1)α = n/m

