Algorithms and Data Structures for Data Science

Review Day

CS 277 April 29, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Please fill out ICES evaluations

You can unofficially test a new system — please fill it out twice!

https://illinois.qualtrics.com/jfe/form/SV_6mOBFJa6ch4XKXc?
rubric=cs&number=277&netid=bradsol

https://illinois.qualtrics.com/jfe/form/SV_6mOBFJa6ch4XKXc?rubric=cs&number=277&netid=bradsol

Review Topics

Recursion
BST and AVL Trees
Traversals

Hashing and Graphs

Coding Practice: Identity Matrix

An identity matrix is a 2D square matrix with 1s across the diagonal

o O =
O = O
O O

Recursion

Recursion is when a function calls itself directly or indirectly

Programming Toolbox: Recursion

When thinking recursively, break the problem into parts:

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can | reduce my problem to an easier one?

Combining: How can | build my solution from recursive pieces?

InsertionSort

4

3

6

1. Assume first value is ‘sorted’
2. Loop through remaining values:

3.Insert value into the ‘sorted’array

Key trick: Insert by swapping!

Recursive insertionSort (Brainstorm + Code)

O3 1715|8921]4]6

Base Case:

Recursive Step:

Combining:

Recursive List Partitioning

Using all elements in a list, can we make two lists which have equal sums?

6]5[4]2]|7

(1)1 f1]1]1

12]3]3[3]1

Recursive List Partitioning

How would a computer solve this problem?

615|142

Recursive List Partitioning

How would a computer solve this problem? Compute every permutation!

6

5

4

2

6

6

514|2
412
2

514

Recursive List Partitioning (Brainstorm)

2 3 7 4 8

Base Case:

Recursive Step:

Combining:

Recursive List Partitioning

Writing code to attempt every possible permutation is tricky with loops.
But its a great example of recursion in action!

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Recursive List Partitioning

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Input: Left Right
615|412

Recursive Calls:
514 |2
514 |2

Recursive List Partitioning

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case:

Base Case: When my input list is empty, | have tried every permutation

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

[4, 3, 1] ([1, [

[3, 1] ([41, [1) ([1, [41)

1] ([3, 4], [1) ([4], [3]) (31, [41) (01, [3, 4])
]
([1, 3, 4], [1) (1, 4], [3]) ([1, 3], [4]) ([1], [3, 4])
([3, 41, [1]) ([4], [1, 3]) (I31, [1, 4]) ([1, [1, 3, 4])

Recursive List Partitioning (Brainstorm and code)

Base Case: When my input list is empty, | have tried every permutation

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Combination Step:

(Binary) Tree Recursion

A binary tree is a tree 1 such that: e

T = None e °

or

T = treeNode(val, T;, Tp)

class treeNode:
def init (self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right

class binaryTree:
def init (self):
self.root = None

o WDN PR

b WDNR

AVL Insertion

If we know our imbalance direction, we can call the correct rotation.

Left RightLeft Right LeftRight

AN

AVL Rotations

Left and right rotation convert sticks into mountains

AVL Rotations

LeftRight (RightLeft) convert elbows into sticks into mountains

ONERO OO
s

Practice your trees!

Practice exams have randomly generated trees for:
Building a tree from scratch (or inserting one node)
Calculating balance and height
Performing traversals

AVL Tree balance calculations

Tree Efficiency

- BST AVL Tree

find
insert
delete

traverse

BST Coding Exercises

Can you write code to implement:

Find
Insert
Remove

Traversals

|V|=n, |E|=m

Edge List Adjacency Matrix Adjacency List
Expressed as O(f)
n+m n2 n+m

Space

insertVertex(v) 1* n* 1*
removeVertex(v) n+m n* deg(v)
insertEdge(u, v) 1 1 1*

in(d ’
removeEdge(u, v) m 1 min(deg(u)

deg(v))
getEdges(v) m n deg(v)
areAdjacent(u, v) m 1 min(deg(u),

deg(v))

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Kruskal’s Algorithm
Repeat until |V| - 1 edges found:

Find the minimum edge connecting two unconnected nodes

Prim'’s Algorithm
Repeat until |V| - 1 edges found:

Find the minimum edge connecting ‘in"and ‘out’ group

Graph Coding Exercises

What did mp_algorithms ask you to do?

Read and parse input datasets (text / csv files)

Use NetworkX to build graphs with and without attributes

NetworkX Graph ADT Cheatsheet
Find
getVertices() —> list(G.nodes())
getkEdges(v) —> G[v]
areAdjacent(u, v) —> G.has_edge(u, v)
Insert
insertVertex(v) —> G.add_node(v)
insertEdge(u, v) —> G.add_edge(u, v)
Remove

removeVertex(v) —> G.remove_node(v)

removekdge(u, v) —> G.remove_edge(u, v)

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

e Open Hashing: store k,v pairs externally

%)

@—+—> | Brett Betty Bob
% A- B B+
%,

¢ Closed Hashing: store k,v pairs in the hash table

K,V
K,V
K,V

Hash Tables

e Open Hashing: store k,v pairs externally

Load Factor (@ = n/m) can be infinite in size

¢ Closed Hashing: store k,v pairs in the hash table

Load Factor (@ = n/m) must be between 0 and 1 (not including 1)

