Algorithms and Data Structures for Data Science
Hashing 2

CS 277 April 10, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives
Review fundamentals of hash tables
Introduce closed hashing approaches to hash collisions

Determine when and how to resize a hash table

Data Structure Review

Data as key, value pairs is an extremely common format in data science

TO KILL A

- -

HEYNE(

-l
Q
A
-
h
P
b
s
3
=3
2

Clockwork Orange

A Hash Table based Dictionary

1/d = {}
2|d[k] = v
3 |(print(d[k])

A Hash Table consists of three things:
1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

e Open Hashing: store k,v pairs externally

¢ Closed Hashing: store k,v pairs in the hash table

Key Value Hash
Bob B+ 2
Anna A- 4
Alice A+ 4
Betty B 2
Brett A- 2
Greg A 0
Sue B 7/
Ali B+ 4
Laura A 7/
Lily B+ 7

OO0 NOOULL B WN - O

[
o

Hash Table (Separate Chaining)

Greg

A

%)

Brett

A-

Betty

B

Al

B+

Alice

A+

Lily

B+

Laura

Hash Table (Separate Chaining)

For hash table of size m and n elements:

Find runs in:

Insert runs in:

Remove runs in:

OO0 NOOULL B~ WN KL O

[ERY
o

LE

Greg

Brett

A

i

Al

Lily

B+

Betty
EJ

Alice

A+

Laura

NINE INE

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption (SUHA)

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, /1, implies

1
m

Uniform: keys are equally likely to hash to any position

Independent: All keys hash independently of each other

Separate Chaining Under SUHA

Given table of size m and n inserted objects

n
Claim: Under SUHA, expected length of chain is —
m

Separate Chaining Under SUHA @

Under SUHA, a hash table of size m and n elements:

Find runs in:

Insert runs in:

Remove runs in:

OO0 NOOUL B WN K- O

[ERY
o

(Example of closed hashing)

Collision Handling: Probe-based Hashing
s={1,8,15) IS| =n
h(k) =k % 7 |Array| =m

o U b W N R O

(Example of closed hashing)

Collision Handling: Linear Probing
s={16,8,4,13,29,11,22} |S| =n
h(k) =k % 7 |Array| =m

h(k, i):(k+i)%7
Try h(k) = (k + 0) % 7, if full...

o U b W N R O

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,8,4,13,29, 11,22} IS| =n
h(k,i)=(k+1i) % 7 |Array| = m
find (29)

0 22 -

1 8

2 16

3 29

4 4

5 11

6 13

(Example of closed hashing)

Collision Handling: Linear Probing @
s={16,8,4,13,29,11,22} |S|=n
h(k,i)=(k+1i) % 7 |Array| = m

remove (16)
0O 22 -
1 8
2 16
3 29
4 4
5 11
6 13

A Problem w/ Linear Probing

Primary clustering:

Description:
11
1,
31
13
Remedy:

O 00 N O O o W N — O
W
N

(Example of closed hashing)

Collision Handling: Quadratic Probing

S={16,8,4,13,29,12,22} IS| = n
h(k) =k % 7 |Array| = m
0 h(k, i) = (k +i*i) % 7
18 Try h(k) = (k + 0) % 7, if full...
2 16
3
4 4
5
6 13

A Problem w/ Quadratic Probing

Secondary clustering:

0 .
i Description:
0
03
Remedy:

O 00 N O O o W N — O

04

(Example of closed hashing)

Collision Handling: Double Hashing
S={16,38,4,13,29, 11,22} IS| =n
hi(k) =k % 7

|Array| = m
ha(k) =5 - (k % 5)

h(k, i) = (h,(k) + i*h,(K)) % 7
Try h(k) = (k + 0*h,(k)) % 7, if full...

16

o Ul b W N R O

13

Run ning Times (Don’t memorize these equations, no need.)
(Expectation under SUHA)

Open Hashing:

insert:

find/ remove:

Closed Hashing:

insert:

find/ remove:

Runnin g Times (Don’t memorize these equations, no need.)
The expected number of probes for find(key) under SUHA
Linear Probing: @
o Successful: %(1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))2
Instead, observe:
Double Hashing: - As o increases:
o Successful: 1/a * In(1/(1-at))
e Unsuccessful: 1/(1-a)
- If a is constant:
Separate Chaining:
e Successful: 1+ a/2
e Unsuccessful: 1 + a

Running Times
The expected number of probes for find(key) under SUHA

Linear Probing:
o Successful: %(1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))2

Probes

Double Hashing:

o Successful: 1/a * In(1/(1-a))
e Unsuccessful: 1/(1-a)

Probes

When do we resize?

Resizing a hash table

How do you resize?

Which collision resolution strategy is better?
e Big Records:

e Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

Running Times Review

Expectation™:

Find
Worst Case:
Expectation™:
Insert
Worst Case:
Expectation™:
Remove

Worst Case:

Storage Space

Bonus Slides

Choosing a Hash Function

Python has a built-in hash! It’s pretty good if you run everything at once.

print (hash ("I can pass in any string!”))

print (hash (205811))

ool b WMNER

Choosing a Hash Function

If you want something that is persistently deterministic, find a seeded hash

import mmh3

print (mmh3.hash ("I can pass in any string!", 10)) #I got: -565691678
print (mmh3.hash ("I can pass in any string!", 50)) #I got: -947521776
print (mmh3.hash ("I can pass in any string!", 12)) #I got: 1680496801

ool dWMNDER

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:
Simple Uniform Hashing Assumption (SUHA)

2) Create a universal hash function family:

Hash Function (Division Method)
Hash of form: h(k) = k %o m

Pro:

Con:

Hash Function (Multiplication Method)
Hash of form: h(k) = |[m(kA% 1)], 0 <A <1

Pro:

Con:

Hash Function (Universal Hash Family) @

Hash of form: &, (k) = ((ak + b) %p) Yom, a,b € 5,7,
1
Vi) #F ky, Pryp(hgplki] = hyplks]) < .

Pro:

Con:

Where do we go from here?

Hash tables were a much needed detour (and allows for next
week’s lab to be a review session)

Still to discuss:
Graph Algorithms
Sets and hash table extensions
‘Bonus topics’
Assignments remaining:
This week’s MP is last MP

This week’s lab is last lab

MP Algorithm

A trio of independent graph algorithm projects designed as a capstone

Learning Objectives:

Practice parsing different data formats into graphs

Practice fundamentals of accessing and modifying graphs in NetworkX

Create a greedy heuristic algorithm to solve a complex problem

Part 1: Graph Coloring

We want to assign a color label to every node in the graph such that
no two neighbors have the same color

Part 1: Graph Coloring

If we want to minimize the number of colors, this can get very
computationally intensive very quickly...

‘ = \¢

N --../.fllﬂﬂv'.—"
QI

4; f;\"\“"-/‘\‘
o“"i?“— B

R NN

RS

Part 1: Graph Coloring

We will do this using a greedy heuristic of our own design:
Given a graph, a list of vertices, and a list of colors

For each node in a specified order:
Check the color of every neighbor

Label the node the first unused color

Ex:

Nodes:V, U, W, Z / \

Color:R, G, B

Part 1: Graph Coloring

We will do this using a greedy heuristic of our own design:
Given a graph, a list of vertices, and a list of colors

For each node in a specified order:
Check the color of every neighbor

Label the node the first unused color

Ex:

Nodes: W, V, U, Z / \

Color:R, G, B

Part 1: Graph Coloring

You are also responsible for making two different types of graphs:

Part 2: Pirate Walk (on a graph!)

Given a grid graph (with node attribute ‘pos’), a start node, and a path
string, record the list of vertices the path goes through in order.

® ® ® Start: 1

Path: “"ENWSSE"

¢ ¢ ¢ Output:

Part 2: Pirate Walk (on a graph!)

Given a grid graph (with node attribute ‘pos’), a start node, and a path
string, record the list of vertices the path goes through in order.

® Start: 1

Path: “"ENWSSE"

?® Output:[1,4,5,2,1,0, 3]

Part 3: OpenFlights Flight Paths

Given two csv files (vertex & edge), build a weighted NetworkX graph

645,"Haugesund Airport’"Haugesund"'"Norway"'HAU"'ENHD",59.34529876709,5.2083601951599,86,1,"E""Europe/Oslo""airport"'OurAirports"
11092,"Larned Pawnee County Airport"'Larned""United States"\N,"KLQR"38.20859909,-99.08599854,2012,-5,"A"\N,"airport"/'OurAirports"

293,"Djerba Zarzis International Airport"'Djerba"'Tunisia""'DJE""'DTTJ)"33.875,10.775500297546387,19,1,"E"'Africa/Tunis""airport""OurAirports"

1] KLQ Rll’ll DTT n
“ENHD"'KLQR"
IIENI_ Dll’llD Jll

Solve each problem your own way @

Part 3 (and to a lesser degree the overall assignment) has less
structure than past assignments — by design!

Use what you've learned in the class previously to build graphs
from different inputs

You can (and are encouraged to) freely discuss your approach to
solving these problems

