
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

April 10, 2024

Hashing 2

Learning Objectives

Review fundamentals of hash tables

Introduce closed hashing approaches to hash collisions

Determine when and how to resize a hash table

Data Structure Review
Data as key, value pairs is an extremely common format in data science

Aardvarks
 Anonymous

By Jim Realman

d = {}
d[k] = v
print(d[k])

1
2
3

A Hash Table based Dictionary

A Hash Table consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
BeAy B 2
BreA A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

BreA
A-

BeAy
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

Hash Table (Separate Chaining)

Hash Table (Separate Chaining)

remove runs in: __________.

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

BreA
A-

BeAy
B

Ali
B+

Alice
A+

Lily
B+

Laura
A

For hash table of size m and n elements:

Find runs in: _________________

Insert runs in: _________________

Remove runs in: _________________

Worst-Case behavior is bad — but what about randomness?

Hash Table

1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption (SUHA)

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform: keys are equally likely to hash to any position

Independent: All keys hash independently of each other

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is
n
m

Given table of size and inserted objectsm n

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

0
1
2
3
4
5
6
7
8
9

10

Collision Handling: Probe-based Hashing
(Example of closed hashing)

0
1
2
3
4
5
6

h(k) = k % 7
S = { 1, 8 , 15} |S| = n

|Array| = m

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (k + i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1) % 7, if full…
Try h(k) = (k + 2) % 7, if full…
Try …

0
1
2
3
4
5
6

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_find(29)

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_remove(16)

A Problem w/ Linear Probing
Primary clustering:

 Description:

 Remedy:

0
1 11

2 12

3 31

4 13

5 32

6
7
8
9

Collision Handling: Quadratic Probing
(Example of closed hashing)

h(k) = k % 7
S = { 16, 8, 4, 13, 29, 12, 22 }

h(k, i) = (k + i*i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1*1) % 7, if full…
Try h(k) = (k + 2*2) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

|S| = n
|Array| = m

A Problem w/ Quadratic Probing
Secondary clustering:

 Description:

 Remedy:

0 01

1 02

2
3
4 03

5
6
7
8
9 04

Collision Handling: Double Hashing
(Example of closed hashing)

|S| = n
|Array| = mh1(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (h1(k) + i*h2(k)) % 7
Try h(k) = (k + 0*h2(k)) % 7, if full…
Try h(k) = (k + 1*h2(k)) % 7, if full…
Try h(k) = (k + 2*h2(k)) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

h2(k) = 5 - (k % 5)

Running Times
Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

find/ remove: __________.

(Don’t memorize these equations, no need.)
(Expectation under SUHA)

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

Separate Chaining:

• Successful: 1 + α/2

• Unsuccessful: 1 + α

The expected number of probes for find(key) under SUHA
(Don’t memorize these equations, no need.)

Instead, observe:

- As α increases:

- If α is constant:

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

When do we resize?

The expected number of probes for find(key) under SUHA

Pr

ob
es

Pr

ob
es

α

α

Resizing a hash table
How do you resize?

Which collision resolution strategy is better?

• Big Records:

• Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

Running Times Review
Hash Table AVL Linked List

Find
Expectation*:

Worst Case:

Insert
Expectation*:

Worst Case:

Remove
Expectation*:

Worst Case:

Storage Space

Where do we go from here?

Still to discuss:

Graph Algorithms

Sets and hash table extensions

Assignments remaining:

This week’s MP is last MP

This week’s lab is last lab

Hash tables were a much needed detour (and allows for next
week’s lab to be a review session)

‘Bonus topics’

MP Algorithm
A trio of independent graph algorithm projects designed as a capstone

Learning Objectives:

Practice parsing different data formats into graphs

Create a greedy heuristic algorithm to solve a complex problem

Practice fundamentals of accessing and modifying graphs in NetworkX

Part 1: Graph Coloring
We want to assign a color label to every node in the graph such that
no two neighbors have the same color

Part 1: Graph Coloring
If we want to minimize the number of colors, this can get very
computationally intensive very quickly…

Part 1: Graph Coloring
We will do this using a greedy heuristic of our own design:

For each node in a specified order:

Check the color of every neighbor

Label the node the first unused color

Given a graph, a list of vertices, and a list of colors

v

u

w z

Nodes: V, U, W, Z

Color: R, G, B

Ex:

Part 1: Graph Coloring
We will do this using a greedy heuristic of our own design:

For each node in a specified order:

Check the color of every neighbor

Label the node the first unused color

Given a graph, a list of vertices, and a list of colors

v

u

w z

Nodes: W, V, U, Z

Color: R, G, B

Ex:

Part 1: Graph Coloring
You are also responsible for making two different types of graphs:

Part 2: Pirate Walk (on a graph!)
Given a grid graph (with node attribute ‘pos’), a start node, and a path
string, record the list of vertices the path goes through in order.

Start: 1

Path: “ENWSSE”

Output:

Part 2: Pirate Walk (on a graph!)
Given a grid graph (with node attribute ‘pos’), a start node, and a path
string, record the list of vertices the path goes through in order.

Start: 1

Output: [1, 4, 5, 2, 1, 0, 3]

Path: “ENWSSE”

Part 3: OpenFlights Flight Paths

645,"Haugesund Airport”,"Haugesund","Norway","HAU","ENHD",59.34529876709,5.2083601951599,86,1,"E","Europe/Oslo","airport","OurAirports"

11092,"Larned Pawnee County Airport","Larned","United States",\N,"KLQR",38.20859909,-99.08599854,2012,-5,"A",\N,"airport","OurAirports"

293,"Djerba Zarzis International Airport","Djerba","Tunisia","DJE","DTTJ",33.875,10.775500297546387,19,1,"E","Africa/Tunis","airport","OurAirports"

"KLQR","DTTJ"

“ENHD","KLQR"

“ENHD","DTTJ"

Given two csv files (vertex & edge), build a weighted NetworkX graph

Solve each problem your own way
Part 3 (and to a lesser degree the overall assignment) has less
structure than past assignments — by design!

Use what you’ve learned in the class previously to build graphs
from different inputs

You can (and are encouraged to) freely discuss your approach to
solving these problems

