Late class start: Enjoy the solar eclipse!
Class begins at 2:15 PM.

Algorithms and Data Structures for Data Science Hashing

CS 277
April 8, 2024
Brad Solomon
Graphs Algorithms

Detour

UNIVERSITY OF
ILLINOIS
URBANA-CHAMPAIGN
Department of Computer Science

Learning Objectives

Motivate and define a hash table

Discuss what a 'good' hash function looks like

Identify a key weakness of the hash table

Introduce strategies to 'correct' this weakness

Data Structure Review
I have a collection of books and I want to store them in dictionary!

Tree (Binary Such tree)

If we recognize that libraries are ordered: $O(\log n)$

What if $O(\log n)$ isn't good enough?

A Hash Table based Dictionary

```
d = {}
d[k] = v
print(d[k])
```

A Hash Table consists of three things:

1. A hash function (key \rightarrow int)
2. A list (stores our data (a) int)
3. 777

Hash Function

Maps a keyspace, a (mathematical) description of the keys for a set of data, to a set of integers.

Hash Function
A hash function must be:

- Deterministic: Given same Key twice, return same value
- Efficient:

011

- Defined for a certain size table:

$$
\begin{aligned}
\text { Universe } \rightarrow & 0 \ldots . . \begin{array}{ll}
& M<1 \\
& M \text { unique values }
\end{array}
\end{aligned}
$$

Hash Function

(Angrave, CS 241)

(Beckman, CS 421)
(Challon, CS 125)
(Davis, CS 101)
(Evans, CS 225)
(Fagen-Ulmschneider, CS 107)
(Gunter, CS 422)
(Herman, CS 233)

Hash Function I to 1 mapping of thise specific Mames
(Angrave, CS 241)
(Beckman, CS 421)
(Challon, CS 125)
(Davis, CS 101)
(Evans, CS 225)
(Fagen-Ulmschneider, CS 107)
(Gunter, CS 422)
(Herman, CS 233)
soloman $2 \gg$

General Hash Function
$\mathrm{An} O(1)$ deterministic operation that maps all keys in a universe U to a defined range of integers $[0, \ldots, m-1]$

- A hash: Function that converts any k in mivese to al \#t (H could be any number) hash $\# 90$ \qquad
- A compression: Takers our $\#$ and converts to $[0, \ldots, m-1]$ $[0,1]<x \%_{0} 2$ (Modulo or Remainder)
Choosing a good hash function is tricky...
- Don't create your own!

Hash Function is it

Hash Function

Exercise for viewer
\rightarrow Some hash function for books

A Hash Table based Dictionary

Hash Collision

A hash collision occurs when multiple unique keys hash to the same value

Perfect Hashing

If $m \geq S$, we can write a perfect hash with no collisions
Bradé Books

m elements

S, a finite Keyspace

General Purpose Hashing

In CS 277, we want our hash functions to work in general.

m elements

Key Value

General Purpose Hashing

If $m<U$, there must be at least one hash collision.

General Purpose Hashing

By fixing h, we open ourselves up to adversarial attacks.

A Hash Table based Dictionary

User Code (is a map):

```
1 Dictionary<KeyType, ValueType> d;
2 d[k] = v;
```

A Hash Table consists of three things:

1. A hash function
2. A data storage structure
3. A method of addressing hash collisions

Open vs Closed Hashing
Addressing hash collisions depends on your storage structure.

- Open Hashing: Staves Key, Valve externally
\longrightarrow Linked list con stave individal notes conwlure

- Closed Hashing:

Stores K, v internally
 allocate fixed memory

Open Hashing

In an open hashing scheme, key-value pairs are stored externally (for example as a linked list).

Hash Collisions (Open Hashing)

A hash collision in an open hashing scheme can be resolved by addine to the listed ist . This is called separate chaining.

Insertion (Separate Chaining)

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A +	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	B +	7

Insertion (Separate Chaining)

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A+	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	B +	7

Insertion (Separate Chaining)

Where does Alice end up relative to Anna in the chain?

Key	Value	Hash
Bob	B+	2
Anna	A-	4
Alice	A+	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B+	4
Laura	A	7
Lily	$\mathrm{B}+$	7

Insertion (Separate Chaining)

Key	Value	Hash
Bob	$\mathrm{B}+$	2
Anna	$\mathrm{A}-$	4
Alice	$\mathrm{A}+$	4
Betty	B	2
Brett	$\mathrm{A}-$	2
Greg	A	0
Sue	B	7
Ali	$\mathrm{B}+$	4
Laura	A	7
Lily	$\mathrm{B}+$	7

Insertion (Separate Chaining)

Key	Value	Hash
Bob	$\mathrm{B}+$	2
Anna	$\mathrm{A}-$	4
Alice	$\mathrm{A}+$	4
Betty	B	2
Brett	$\mathrm{A}-$	2
Greg	A	0
Sue	B	7
Ali	$\mathrm{B}+$	4
Laura	A	7
Lily	$\mathrm{B}+$	7

Insertion (Separate Chaining)

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A +	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	B +	7

Find (Separate Chaining)
_find("Sue")
(akin)
$\rightarrow 0(n)$

Remove (Separate Chaining)

Hash Table (Separate Chaining)

For hash table of size \boldsymbol{m} and \boldsymbol{n} elements:

Find runs in:

Insert runs in:

Remove runs in:

\qquad

Fundamentals of Probability

Imagine you roll a pair of six-sided dice.
The sample space Ω is the set of all possible outcomes.

An event $E \subseteq \Omega$ is any subset.

$$
\begin{aligned}
& G D 1 \text { rolls } 1 \\
& \leftrightarrow D \text { \& } 1 \text { coll } 12
\end{aligned}
$$

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?
The expectation of a (discrete) random variable is: $E[X]=\sum_{x \in \Omega} \operatorname{Pr}\{X=x\} \cdot x$ Averse expected out rome

$$
\begin{gathered}
\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 3+\ldots \\
=3,5
\end{gathered}
$$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$ Pub
value
$=\sum_{x} \sum_{y} \operatorname{Pr}\{X=x, Y=y\}^{i}(x+y)$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

$$
=\sum_{x} \sum_{y} \operatorname{Pr}\{X=x, Y=y\}(x+y)
$$

$$
=\sum_{x}^{x} x \sum_{y}^{y} \frac{\operatorname{Pr}\{X=x, Y=y\}}{\text { sums ap to 1 }}+\sum_{y} y \sum_{x} P r\{X=x, Y=y\}
$$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

$$
\begin{aligned}
& =\sum_{x} \sum_{y} \operatorname{Pr}\{X=x, Y=y\}(x+y) \\
& =\sum_{x} x \sum_{y} \operatorname{Pr}\{X=x, Y=y\}+\sum_{y} y \sum_{x} \operatorname{Pr}\{X=x, Y=y\} \\
& =\sum_{x} x \cdot \operatorname{Pr}\{X=x\}+\sum_{y} y \cdot \operatorname{Pr}\{Y=y\}
\end{aligned}
$$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

$$
\begin{aligned}
& 3.5+3.5 \\
= & 7
\end{aligned}
$$

Hash Table

Worst-Case behavior is bad - but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:
L) Simple unitoim hash aSs umption
0
2) Create a universal hash function family:

Simple Uniform Hashing Assumption (SHA)

Given table of size m, a simple uniform hash, h, implies

$$
\forall k_{1}, k_{2} \in U \text { where } \underbrace{\frac{\int_{\mathrm{k}}^{2}}{m}}_{\substack{k_{1} \neq k_{2}, \operatorname{Pr}\left(h\left[k_{1}\right]=h\left[k_{2}\right]\right] \\ \text { Same } \\ \text { valve }}}
$$

Uniform: Is a flak line \qquad
\rightarrow everything is equally likely to hash to ewer position
Independent:
\rightarrow Every iteon hashes indeperxatly of ever athos item

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$ Num objects: n
$\alpha_{j}=$ expected \# of items hashing to position j

$$
m
$$

$\alpha_{j}=\sum_{i} H_{i, j}$

$$
H_{i, j}=\left\{\begin{array}{l}
1 \text { if item i hashes to } \mathrm{j} \\
0 \text { otherwise }
\end{array}\right.
$$

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is -
$\alpha_{j}=$ expected \# of items hashing to position j
$\alpha_{j}=\sum_{i} H_{i, j}$
$H_{i, j}=\left\{\begin{array}{l}1 \text { if item i hashes to } \mathrm{j} \\ 0 \text { otherwise }\end{array}\right.$
$E\left[\alpha_{j}\right]=E\left[\sum_{i} H_{i, j}\right]$

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is -
$\alpha_{j}=$ expected \# of items hashing to position j

$$
m
$$

$\alpha_{j}=\sum_{i} H_{i, j}$
$H_{i, j}=\left\{\begin{array}{l}1 \text { if item } \mathrm{i} \text { hashes to } \mathrm{j} \\ 0 \text { otherwise }\end{array}\right.$
$E\left[\alpha_{j}\right]=E\left[\sum_{i} H_{i, j}\right]$
$E\left[\alpha_{j}\right]=\sum_{i}^{i} \operatorname{Pr}\left(H_{i, j}=1\right) * 1+\overline{\operatorname{Pr}(H, 0) * 0}$

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is $-n$
$\alpha_{j}=$ expected \# of items hashing to position j
$\alpha_{j}=\sum_{i} H_{i, j} \quad H_{i, j}=\left\{\begin{array}{l}1 \text { if item } \mathrm{i} \text { hashes to } \mathrm{j} \\ 0 \text { otherwise }\end{array}\right.$
$E\left[\alpha_{j}\right]=E\left[\sum_{i} H_{i, j}\right]$
$E\left[\alpha_{j}\right]=\sum_{i}^{i} \operatorname{Pr}\left(H_{i, j}=1\right) * 1+\operatorname{Pr}\left(H_{i, j}=0\right) * 0$
$E\left[\alpha_{j}\right]=n * \operatorname{Pr}\left(H_{i, j}=1\right) \cdot 1$

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is n Num objects: n
$\alpha_{j}=$ expected \# of items hashing to position j
$\alpha_{j}=\sum_{i} H_{i, j}$
$E\left[\alpha_{j}\right]=E\left[\sum_{i} H_{i, j}\right]$
$E\left[\alpha_{j}\right]=n * \operatorname{Pr}\left(H_{i, j}=1\right)$

$$
H_{i, j}=\left\{\begin{array}{l}
1 \text { if item } \mathrm{i} \text { hashes to } \mathrm{j} \\
0 \text { otherwise }
\end{array}\right.
$$

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is $-\frac{\pi}{m}$ Table Size: m
$\alpha_{j}=$ expected \# of items hashing to position $\mathrm{j} \quad m \quad$ Num objects: n
$\alpha_{j}=\sum_{i} H_{i, j}$
$E\left[\alpha_{j}\right]=E\left[\sum_{i} H_{i, j}\right]$
$E\left[\alpha_{j}\right]=n * \operatorname{Pr}\left(H_{i, j}=1\right)$
$\mathbf{E}\left[\alpha_{\mathrm{j}}\right]=\frac{\mathbf{n}}{\mathbf{m}}$

$$
H_{i, j}=\left\{\begin{array}{l}
1 \text { if item } \mathrm{i} \text { hashes to } \mathrm{j} \\
0 \text { otherwise }
\end{array}\right.
$$

$$
\operatorname{Pr}\left[H_{i, j}=1\right]=\frac{1}{m}
$$

Separate Chaining Under SUHA
Under SUHA, a hash table of size m and n elements:
Find runs in: \qquad $O(1+2)$

Insert runs in: \qquad $O(1)$.

$$
*-w e
$$

Remove runs in: $O(1+\alpha)$
You sin me $\cap \& I$ set in to be good

Separate Chaining Under SUHA
Pros:

Cons:

Next time: Closed Hashing

Closed Hashing: store k, v pairs in the hash table

$$
\begin{aligned}
& S=\{1,8,15\} \\
& h(k)=k \% 7
\end{aligned}
$$

