# Late class start: Enjoy the solar eclipse!

Class begins at 2:15 PM.



# Algorithms and Data Structures for Data Science Hashing



# Learning Objectives

Motivate and define a hash table



Discuss what a 'good' hash function looks like

Identify a key weakness of the hash table

Introduce strategies to 'correct' this weakness

#### **Data Structure Review**

I have a collection of books and I want to store them in a dictionary!



# If we recognize that libraries are ordered: O(log n)



# What if O(log n) isn't good enough?



Huch function



ISBN: 9781526602381





alliess

Call #: PR

6068.093

H35 1998

ISBN: 9781526602381

Call #: PR

6068.093

H35 1998





Chapter I

#### AN UNEXPECTED PARTY

In a hole in the ground there lived a hobbit. Not a nasty, dirty, wet hole, filled with the ends of worms and an oozy smell, nor yet a dry, bare, sandy hole with nothing in it to sit down on or to eat: it was a hobbit-hole, and that means comfort.

It had a perfectly round door like a porthole, painted green, with a shiny yellow brass knob in the exact middle. The door opened on to a tube-shaped hall like a tunnel: a very comfortable tunnel without smoke, with panelled walls, and floors tiled and carpeted, provided with polished chairs, and lots and lots of pegs for hats and coats-the hobbit was fond of visitors. The tunnel wound on and on, going fairly but not quite straight into the side of the hill-The Hill, as all the people for many miles round called it-and many little round doors opened out of it, first on one side and then on another. No going upstairs for the hobbit: bedrooms, bathrooms, cellars, pantries (lots of these), wardrobes (he had whole rooms devoted to clothes), kitchens, dining-rooms, all were on the same floor, and indeed on the same passage. The best rooms were all on the left-hand side (going in), for these were the only ones to have windows, deep-set round windows looking over his garden, and meadows beyond, sloping down to the

This hobbit was a very well-to-do hobbit, and his name

- .. . . . . ,



```
1 d = {}
2 d[k] = v
3 print(d[k])
```

#### A **Hash Table** consists of three things:

Maps a **keyspace**, a (mathematical) description of the keys for a set of data, to a set of integers.



A hash function *must* be:

• Deterministic: Given Same Key tuice, cetur Same Value

• Efficient:

• Defined for a certain size table: \( \frac{\lambda\_{n,vee}}{\sqrt{\lambda}} \) \( \frac{\lambda\_{n,vee}}{\sqrt{\lambda}} \)

M unique Volves





#### **General Hash Function**



An O(1) deterministic operation that maps all keys in a universe U to a defined range of integers  $[0,\ldots,m-1]$ 

- A hash: Function that converts any to in universe to ea # (H could be any number) hash # 90 M
- A compression: Takes our # and converts to [0,..., mil)

Choosing a good hash function is tricky...

Don't create your own!





Exercise for viewer

Ly Some hash Eunction

Exercise books









#### **Hash Collision**

A *hash collision* occurs when multiple unique keys hash to the same value

J.R.R Tolkien = 30!



Jim Truth = 30!



| ••• | •••        |
|-----|------------|
| 30  | 555        |
| 31  | Ø          |
| ••• | Ø          |
| 37  | Goosebumps |
| 38  | Ø          |
| ••• | •••        |

# Perfect Hashing

If  $m \geq S$ , we can write a *perfect* hash with no collisions



#### *m* elements

| Key Value |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

#### General Purpose Hashing

In CS 277, we want our hash functions to work in general.



#### m elements

| Key | Value |
|-----|-------|
|     |       |
|     |       |
|     |       |
|     |       |
|     |       |
|     |       |
|     |       |
|     |       |
|     |       |

#### General Purpose Hashing

If m < U, there must be at least one hash collision.



# General Purpose Hashing

By fixing h, we open ourselves up to adversarial attacks.





#### User Code (is a map):

```
Dictionary<KeyType, ValueType> d;
d[k] = v;
```

#### A **Hash Table** consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

# Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

• Open Hashing: Stars Key, Value externally Linked 1/5t (on Steve individual novdes conjuntere • Closed Hashing:

Stores K, V internally allorate fixed memory

# **Open Hashing**

In an *open hashing* scheme, key-value pairs are stored externally (for example as a linked list).



# Hash Collisions (Open Hashing)

A *hash collision* in an open hashing scheme can be resolved by

| A hash collision in an open hashing scheme can be resolved by
| A hash collision in an open hashing scheme can be resolved by
| A hash collision in an open hashing scheme can be resolved by
| A hash collision in an open hashing scheme can be resolved by
| A hash collision in an open hashing scheme can be resolved by



```
insert("Bob")
```

\_insert("Anna")

| Key   | Value | Hash |
|-------|-------|------|
| Bob   | B+    | 2    |
| Anna  | A-    | 4    |
| Alice | A+    | 4    |
| Betty | В     | 2    |
| Brett | A-    | 2    |
| Greg  | А     | 0    |
| Sue   | В     | 7    |
| Ali   | B+    | 4    |
| Laura | А     | 7    |
| Lily  | B+    | 7    |



#### Insertion (Separate Chaining) \_\_insert("Alice")

| Key   | Value      | Hash |
|-------|------------|------|
| Bob   | B+         | 2    |
| Anna  | A-         | 4    |
| Alice | <b>A</b> + | 4    |
| Betty | В          | 2    |
| Brett | A-         | 2    |
| Greg  | А          | 0    |
| Sue   | В          | 7    |
| Ali   | B+         | 4    |
| Laura | А          | 7    |
| Lily  | B+         | 7    |



Where does Alice end up relative to Anna in the chain?

| Key   | Value      | Hash |
|-------|------------|------|
| Bob   | B+         | 2    |
| Anna  | A-         | 4    |
| Alice | <b>A</b> + | 4    |
| Betty | В          | 2    |
| Brett | A-         | 2    |
| Greg  | А          | 0    |
| Sue   | В          | 7    |
| Ali   | B+         | 4    |
| Laura | А          | 7    |
| Lily  | B+         | 7    |



| Key   | Value | Hash |
|-------|-------|------|
| Bob   | B+    | 2    |
| Anna  | A-    | 4    |
| Alice | A+    | 4    |
| Betty | В     | 2    |
| Brett | A-    | 2    |
| Greg  | А     | 0    |
| Sue   | В     | 7    |
| Ali   | B+    | 4    |
| Laura | А     | 7    |
| Lily  | B+    | 7    |



| Key   | Value | Hash |
|-------|-------|------|
| Bob   | B+    | 2    |
| Anna  | A-    | 4    |
| Alice | A+    | 4    |
| Betty | В     | 2    |
| Brett | A-    | 2    |
| Greg  | А     | 0    |
| Sue   | В     | 7    |
| Ali   | B+    | 4    |
| Laura | А     | 7    |
| Lily  | B+    | 7    |



| Key   | Value | Hash |
|-------|-------|------|
| Bob   | B+    | 2    |
| Anna  | A-    | 4    |
| Alice | A+    | 4    |
| Betty | В     | 2    |
| Brett | A-    | 2    |
| Greg  | А     | 0    |
| Sue   | В     | 7    |
| Ali   | B+    | 4    |
| Laura | А     | 7    |
| Lily  | B+    | 7    |



# Find (Separate Chaining)



# Remove (Separate Chaining)





# Hash Table (Separate Chaining)



#### For hash table of size *m* and *n* elements:

Find runs in:

Insert runs in:

Remove runs in:



Imagine you roll a pair of six-sided dice.

The **sample space**  $\Omega$  is the set of all possible outcomes.



An **event**  $E \subseteq \Omega$  is any subset.

Imagine you roll a pair of six-sided dice. What is the expected value?

The **expectation** of a (discrete) random variable is:

$$E[X] = \sum_{x \in \Omega} \left( Pr\{X = x\} \cdot x \right) \qquad \text{Average expected outcome}$$

$$\frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \dots$$

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X+Y] = E[X] + E[Y]$$

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$

$$= \sum_{x} \sum_{y} Pr\{X = x, Y = y\}(x + y)$$

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$

$$= \sum_{x} \sum_{y} Pr\{X = x, Y = y\}(x + y)$$

$$= \sum_{x} \sum_{y} Pr\{X = x, Y = y\} + \sum_{y} \sum_{x} Pr\{X = x, Y = y\}$$
Sums up to 1

Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$

$$= \sum_{x} \sum_{y} Pr\{X = x, Y = y\}(x + y)$$

$$= \sum_{x} x \sum_{y} Pr\{X = x, Y = y\} + \sum_{y} y \sum_{x} Pr\{X = x, Y = y\}$$

$$= \sum_{x} x \cdot Pr\{X = x\} + \sum_{y} y \cdot Pr\{Y = y\}$$



Imagine you roll a pair of six-sided dice. What is the expected value?

$$E[X + Y] = E[X] + E[Y]$$
 $3.5 + 3.5$ 
 $7$ 

#### Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

2) Create a *universal hash function family:* 

# Simple Uniform Hashing Assumption



Given table of size m, a simple uniform hash, h, implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \ Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

#### **Independent:**

Ly Every item hashes independently of every other item

Table Size: *m* 

Claim: Under SUHA, expected length of chain is  $\frac{n}{m}$ 

Num objects: n

 $\alpha_i$  = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

Table Size: *m* 

Claim: Under SUHA, expected length of chain is  $\frac{n}{m}$ 

Num objects: n

 $\alpha_j$  = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$$

Table Size: m

Claim: Under SUHA, expected length of chain is  $\frac{n}{}$ 

Num objects: *n* 

 $\alpha_i$  = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

m

$$E[\alpha_j] = E\left[\sum_{i} H_{i,j}\right]$$

$$E[\alpha_j] = \sum_{i} \Pr(H_{i,j} = 1) * 1 + \Pr(H_{i,j} = 0) * 0$$

Table Size: m

Claim: Under SUHA, expected length of chain is  $\frac{n}{-}$ 

Num objects n

 $\alpha_i$  = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

m

$$E[\alpha_j] = E\left[\sum_i H_{i,j}\right]$$

$$E[\alpha_j] = \sum_i Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1) \cdot 1$$

Table Size: *m* 

Claim: Under SUHA, expected length of chain is  $\frac{n}{m}$ 

Num objects: n

 $\alpha_i$  = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$Pr[H_{i,j} = 1] = \frac{1}{m}$$



 $\alpha_i$  = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$E[\alpha_j] = E\Big[\sum_i H_{i,j}\Big]$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

$$\mathbf{E}[\alpha_{\mathbf{j}}] = \frac{\mathbf{n}}{\mathbf{m}}$$

Num objects: n

$$H_{i,j} = \begin{cases} 1 \text{ if item i hashes to j} \\ 0 \text{ otherwise} \end{cases}$$

$$Pr[H_{i,j} = 1] = \frac{1}{m}$$



Under SUHA, a hash table of size m and n elements:

Find runs in: 
$$O(1+2)$$
.  $Q = 1/m$ 

Remove runs in: 
$$O(1+A)$$

$$O(1)^*$$







Pros:

Cons:

### Next time: Closed Hashing

**Closed Hashing:** store *k,v* pairs in the hash table

