Algorithms and Data Structures for Data Science Graph Traversals

CS 277
April 3, 2024
Brad Solomon

Learning Objectives

Practice using NetworkX to build and explore graphs

Implement breadth and depth traversals on graphs

Extend NetworkX for weighted and directed graphs

NetworkX Graph ADT

Find

getVertices() \longrightarrow list(G.nodes())
getEdges(v) \longrightarrow G[v]
areAdjacent(u, v) —> G.has_edge(u, v)
Insert
insertVertex(v) —> G.add_node(v)
insertEdge(u, v) \longrightarrow G.add_edge(u, v)

Remove

removeVertex(v) —> G.remove_node(v)
removeEdge($u, v) \longrightarrow>$ G.remove_edge(u, v)

Graph Practice 1: Build the following graph

Graph Practice 1: Build the following graph

We can build a graph in NetworkX by adding edges one at a time:

Graph Practice 1: Build the following graph

Given a list of edges, we can build the graph all at once
$G=n x \cdot \operatorname{Graph}([(0,1),(0,3),(1,2),(2,3),(2,7),(5,6),(5,7)])$
Given a NumPy matrix, we can build the graph all at once

G = nx.Graph(<NumPy Adjacency Matrix>)
Given a file in format edge list or adjacency list

```
G = nx.read_edgelist(<edgeList file>)
G = nx. read_adjlist(<adjList file>)
```


Graph Practice 2: Remove all odd vertices

Graph Practice 2: Remove all odd vertices

G.nodes() by default returns a dictionary.

```
1 nodes = list(G.nodes())
    2
for n in nodes:
    if n % 2 == 1:
        G.remove_node(n)
```


Graph Practice 3: Find the highest degree vertex

Graph Practice 3: Find the highest degree vertex

We can build a graph in NetworkX by adding edges one at a time:

```
max = -1
v = None
for n in G.nodes():
    if len(G[n].keys()) > max:
        max = len(G[n].keys())
        v = n
print(v, max)
\omega
14

\section*{Graph Traversals}

There is no clear order in a graph (even less than a tree!)
How can we systematically go through a complex graph in the fewest steps?
Tree traversals won't work - lets compare:

- Rooted
- Acyclic
- Clear base cases ('doneness')

- Arbitrary starting point
- Can have cycles
- Must track visited nodes directly

\section*{Simple BFS Traversal 1) Create a queue and a visit list} 2) Initialize both to contain our start

3) While queue not empty:

Remove front vertex of queue
Check if each edge has been seen before Add unvisited edges to queue (and list)

Queue

Visited \(\square\)

Simple BFS Traversal 1) Create a queue and a visit list 2) Initialize both to contain our start

3) While queue not empty:

Remove front vertex of queue Check if each edge has been seen before Add unvisited edges to queue (and list)

\section*{What is my runtime?}

Queue


Visited
A B C D E F H G

\section*{Simple BFS Traversal}


What is the shortest distance from \(\mathbf{A}\) to \(\mathbf{H}\) ?

What is the shortest path from \(\mathbf{A}\) to \(\mathbf{H}\) ?

What is the shortest path from \(\mathbf{A}\) to \(\mathbf{F}\) ?

What is the shortest distance from \(\mathbf{A}\) to \(\mathbf{F}\) ?

\section*{Simple BFS Traversal}


What data structure is this?

\section*{Simple BFS Traversal}


A minimum spanning tree is a tree formed by a subset of graph edges such that all vertices are connected with the smallest total possible edge weight


We call the remaining edges cross edges. What can I say about a graph with at least one cross edge?

\section*{Traversal: BFS}


If we modify our BFS traversal algorithm, we can track both distances and discovery edges!

\section*{Traversal: BFS}

Replace 'visited'list with a distance and a previous

When we add to queue, record previous.

When we process vertex from queue, record distance.
"Unvisited" vertices have neither distance or previous
\begin{tabular}{|l|l|l|}
\hline Vertex & Distance & Previous \\
\hline A & & \\
\hline B & & \\
\hline C & & \\
\hline D & & \\
\hline E & & \\
\hline F & & \\
\hline G & & \\
\hline H & & \\
\hline
\end{tabular}

Queue

\section*{Traversal: BFS}

Replace 'visited'list with a distance and a previous

When we add to queue, record previous.

When we process vertex from queue, record distance.
\begin{tabular}{|l|l|l|}
\hline Vertex & Distance & Previo \\
\hline A & 0 & - \\
\hline B & 1 & A \\
\hline C & 1 & A \\
\hline D & 1 & A \\
\hline E & 2 & B \\
\hline F & 2 & C \\
\hline G & 3 & E \\
\hline H & 2 & D \\
\hline
\end{tabular}
"Unvisited" vertices have neither distance or previous

\section*{BFS Traversal using NetworkX}

There are many different methods for running a BFS (different output):
```

G = nx.random_regular_graph(3, 6)
print(list(nx.bfs_edges(G, 0)))
print(list(nx.bfs_predecessors(G, 0)))
print(nx.descendants_at_distance(G, 0, 0))
print(nx.descendants_at_distance(G, 0, 1))
print(nx.descendants_at_distance(G, 0, 2))
print(nx.descendants_at_distance(G, 0, 3))
T = nx.bfs_tree (G, 0)

```

\section*{Traversal: DFS}


\section*{Traversal: DFS}

1) Create a stack and a visit list
2) Initialize both to contain our start
3) While stack not empty:

Use top() to look at current vertex
If no unvisited children, pop()
Otherwise, push() the first unvisited child

\section*{Traversal: DFS}

Do we still make a spanning tree?


Does distance have meaning here?

Discovery Edge
Do our edge labels have meaning here?
Back Edge

\section*{DFS Traversal using NetworkX}

What can the BFS do that the DFS cannot do?
```

 1}\mp@code{G = nx.random_regular_graph(3, 6)
    ```

\title{
DFS vs BFS Runtime
}

DFS:
Use Cases:

Peak Memory Cost:

\section*{BFS:}

Use Cases:

Peak Memory Cost:

DFS vs BFS

```

