Algorithms and Data Structures for Data Science Graph Traversals

CS 277 Brad Solomon April 3, 2024

Department of Computer Science

Learning Objectives

Practice using NetworkX to build and explore graphs

Implement breadth and depth traversals on graphs

Extend NetworkX for weighted and directed graphs

NetworkX Graph ADT

Find

```
getVertices() ---> list( G.nodes() )
getEdges(v) ---> G[v]
areAdjacent(u, v) ---> G.has_edge(u, v)
```

Insert

```
insertVertex(v) —> G.add_node(v)
```

```
insertEdge(u, v) ---> G.add_edge(u, v)
```

Remove

```
removeVertex(v) ---> G.remove_node(v)
removeEdge(u, v) ---> G.remove_edge(u, v)
```

Graph Practice 1: Build the following graph

Graph Practice 1: Build the following graph

We can build a graph in NetworkX by adding edges one at a time:

```
G = nx.Graph()
 1
 2
   G.add edge(0, 1)
 3
 4
   G.add edge(1, 2)
 5
 6
   G.add edge(2, 3)
 8
   G.add edge(3, 0)
 9
10
   G.add edge (5, 6)
11
12
   G.add edge (5, 7)
13
14
   G.add edge(7, 2)
15
16
17
18
19
20
21
22
```

Graph Practice 1: Build the following graph Given a list of edges, we can build the graph all at once

G = nx.Graph([(0, 1), (0, 3), (1, 2), (2, 3), (2, 7), (5, 6), (5, 7)])

Given a NumPy matrix, we can build the graph all at once

G = nx.Graph(<NumPy Adjacency Matrix>)

Given a file in format edge list or adjacency list

G = nx.read_edgelist(<edgeList file>)

G = nx. read_adjlist(<adjList file>)

Why not adjacency matrix?

Graph Practice 2: Remove all odd vertices

Graph Practice 2: Remove all odd vertices

G.nodes() by default returns a **dictionary**.

```
nodes = list(G.nodes())
 1
 2
   for n in nodes:
 3
 4
        if n % 2 == 1:
 5
 6
            G.remove node(n)
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
```

Graph Practice 3: Find the highest degree vertex

Graph Practice 3: Find the highest degree vertex (

We can build a graph in NetworkX by adding edges one at a time:

```
max = -1
 1
   v = None
 2
 3
   for n in G.nodes():
 5
        if len(G[n].keys()) > max:
 6
 7
             max = len(G[n].keys())
 8
 9
10
             \mathbf{v} = \mathbf{n}
11
   print(v, max)
12
13
14
15
16
17
18
19
20
21
22
```

Graph Traversals

There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:

- Rooted
- Acyclic
- Clear base cases ('doneness')

- Arbitrary starting point
- Can have cycles
- Must track visited nodes directly

Simple BFS Traversal 1) Create a queue and a visit list

2) Initialize both to contain our start

3) While queue not empty:

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

Simple BFS Traversal 1) Create a queue and a visit list

2) Initialize both to contain our start

3) While queue not empty:

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

What is my runtime?

Simple BFS Traversal

What is the shortest distance from **A** to **H**?

What is the shortest path from **A** to **H**?

What is the shortest path from **A** to **F**?

What is the shortest distance from **A** to **F**?

Simple BFS Traversal

What data structure is this?

Simple BFS Traversal

A **minimum spanning tree** is a tree formed by a subset of graph edges such that all vertices are connected with the smallest total possible edge weight

On an unweighted, undirected graph this MST can be built by tracking **discovery** edges during a BFS traversal

We call the remaining edges **cross** edges. What can I say about a graph with at least one **cross** edge?

Traversal: BFS

If we modify our BFS traversal algorithm, we can track both **distances** and **discovery edges!**

Traversal: BFS

Replace 'visited' list with a **distance** and a **previous**

When we add to queue, record **previous**.

When we process vertex from queue, record **distance**.

"Unvisited" vertices have neither **distance** or **previous**

B

Distance	Previous

Queue

Traversal: BFS

Replace 'visited' list with a **distance** and a **previous**

When we add to queue, record **previous**.

When we process vertex from queue, record **distance**.

"Unvisited" vertices have neither **distance** or **previous**

Vertex	Distance	Previo
А	0	- (
В	1	Α
С	1	Α
D	1	Α
E	2	В
F	2	С
G	3	E
Н	2	D

D

Queue

B

E

G

BFS Traversal using NetworkX

There are many different methods for running a BFS (different output):

```
G = nx.random regular graph(3, 6)
 1
 2
 3 print(list(nx.bfs edges(G, 0)))
 4
   print(list(nx.bfs predecessors(G, 0)))
 5
 6
   print(nx.descendants at distance(G, 0, 0))
 8
   print(nx.descendants at distance(G, 0, 1))
 9
10
   print(nx.descendants at distance(G, 0, 2))
11
12
   print(nx.descendants at distance(G, 0, 3))
13
14
   T = nx.bfs tree(G, 0)
15
16
17
18
19
20
21
22
```

Traversal: DFS

Traversal: DFS

Create a stack and a visit list
 Initialize both to contain our start
 While stack not empty:
 Use top() to look at current vertex
 If no unvisited children, pop()

Otherwise, **push()** the first unvisited child

Traversal: DFS

Do we still make a spanning tree?

Does distance have meaning here?

Discovery Edge

Do our edge labels have meaning here?

Back Edge

DFS Traversal using NetworkX

What can the BFS do that the DFS cannot do?

```
G = nx.random regular graph(3, 6)
 1
 2
 3
   print(list(nx.dfs edges(G, 0)))
 4
 5
 6
 7 print(list(nx.dfs predecessors(G, 0)))
 8
 9
   print(list(nx.find cycle(G, 0)))
10
11
12
   T = nx.dfs tree(G, 0)
13
14
15
16
17
18
19
20
21
22
```

DFS vs BFS Runtime

DFS:

Use Cases:

BFS:

Use Cases:

Peak Memory Cost:

Peak Memory Cost:

