Algorithms and Data Structures for Data Science

CS 277 Brad Solomon April 3, 2024

Department of Computer Science

Learning Objectives

Practice using NetworkX to build and explore graphs

Implement breadth and depth traversals on graphs -

Extend NetworkX for weighted and directed graphs 4

Graph Practice 1: Build the following graph

We can build a graph in NetworkX by adding edges one at a time:

```
G = nx.Graph()
 1
 2
   G.add edge(0, 1)
 3
 4
   G.add edge(1, 2)
 5
 6
   G.add edge(2, 3)
 8
   G.add edge(3, 0)
 9
10
   G.add edge (5, 6)
11
12
   G.add edge (5, 7)
13
14
   G.add edge(7, 2)
15
16
17
18
19
20
21
22
```


Given a NumPy matrix, we can build the graph all at once

G = nx.Graph(<NumPy Adjacency Matrix>)

G = nx. read_adjlist(<adjList file>) G = nx. read_adjlist(<adjList file>) G = nx. read_adjlist(<adjList file>) Why not adjacency matrix?

Graph Practice 2: Remove all odd vertices

G.nodes() by default returns a **dictionary**.

Graph Practice 3: Find the highest degree vertex (

We can build a graph in NetworkX by adding edges one at a time:

```
max = -1
 1
   v = None
 2
 3
   for n in G.nodes():
 5
        if len(G[n].keys()) > max:
 6
 7
             max = len(G[n].keys())
 8
 9
10
             \mathbf{v} = \mathbf{n}
11
   print(v, max)
12
13
14
15
16
17
18
19
20
21
22
```

Graph Traversals

There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:

- Rooted
- Acyclic
- Clear base cases ('doneness')

- Arbitrary starting point
- Can have cycles
- Must track visited nodes directly

Simple BFS Traversal 1) Create a queue and a visit list

2) Initialize both to contain our start

3) While queue not empty:

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

Simple BFS Traversal 1) Create a queue and a visit list

2) Initialize both to contain our start
3) While queue not empty:

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

Simple BFS Traversal Shortest path from start to

What is the shortest distance from **A** to **H**? $A \rightarrow D \rightarrow H$ \leftarrow $A \rightarrow A \rightarrow A$

What is the shortest path from **A** to **H**?

From G to H shortest path? 1 not 5! What is the shortest path from **A** to **F**? A - C - F

What is the shortest distance from **A** to **F**?

Simple BFS Traversal

Simple BFS Traversal

 (\mathbf{H})

D

B

B

Ε

G

d'scorer)

A **minimum spanning tree** is a tree formed by a subset of graph edges such that all vertices are connected with the smallest total possible edge weight

On an unweighted, undirected graph this MST can be built by tracking **discovery** edges during a BFS traversal *Tree encodes shorlest path from A to onything* We call the remaining edges **cross** edges. What can I say about a graph with at least one **cross** edge?

is there is a cycle

= 1 ??

Traversal: BFS

If we modify our BFS traversal algorithm, we can track both **distances** and **discovery edges!**

Traversal: BFS

Replace 'visited' list with a **distance** and a **previous**

When we add to queue, record **previous**.

When we process vertex from queue, record **distance**.

"Unvisited" vertices have neither **distance** or **previous**

Queue

B

Vertex	Distance	Previous	
А	Õ	None	
B	01 <u>1</u> =1	A	
5	0+1=1	A	
D	0+2=1	A	
E	2+1=2	B	
F	2	C	
G	3	E	
Н	2	\triangleright	
			Fre
			٨

Traversal: BFS

Replace 'visited' list with a **distance** and a **previous**

B

E

When we add to queue, record **previous**.

When we process vertex from queue, record **distance**.

"Unvisited" vertices have neither **distance** or **previous**

BFS Traversal using NetworkX

There are many different methods for running a BFS (different output):

Traversal: DFS

1) Cleate start, initialize va) start L'hile stark Not empty! - Use topil to laste at "cwient" - add 4nisited chills to start pushi Ly Mark us Visited IP no unvisited children pop()

ADCBGFHEIJ

Stark' XX X X DCZGZZZZZ 401

Traversal: DFS

Create a stack and a visit list
 Initialize both to contain our start
 While stack not empty:
 Use top() to look at current vertex
 If no unvisited children, pop()

Otherwise, **push()** the first unvisited child

Traversal: DFS

Do we still make a spanning tree? Gres! All traversals matter spanning frees * ¥ unweighted graphs Does distance have meaning here?

No, no listaire meaning

Back Edge

Discovery Edge

Do our edge labels have meaning here? (3 Tes: Built Clare E Closs rdge is a rycle

DFS Traversal using NetworkX

What can the BFS do that the DFS cannot do?

DFS vs BFS Runtime **BFS:** O(n + m)DFS: $\mathcal{O}(\Lambda tm)$ Use Cases: Spanning Line Use Cases: Spanning free Detect Cycles (xiles Shortest Path Peak Memory Cost: Spad prok Memory E Wilk of Sigph Peak Memory Cost: "In regi would longest pith is usually shorter Ontside class sope: Much more flexible in use cases then width of graph "Chaice of next"

Where do we go from here?

Consider: How does our implementation change for weights? for directed edges?

Graph Practice 4: Build a weighted graph

We can build a graph in NetworkX by adding edges one at a time:

```
G = nx.Graph()
 1
 2
   G.add edge(0, 1, weight=5)
 3
 4
   G.add edge(1, 2, weight=1)
 5
 6
   G.add edge(2, 3, weight=2)
 8
   G.add edge(3, 0, weight=6)
 9
10
   G.add edge(5, 6, weight=3)
11
12
   G.add edge(5, 7, weight=7)
13
14
   G.add edge(7, 2, weight=2)
15
16
17
18
19
20
21
22
```

with weights!

Weighted Directed Graphs

Graph Practice 5: Build a directed weighted graph

We can build a directed graph in NetworkX by using a DiGraph() object:

```
G = nx.DiGraph()
 1
 2
   G.add edge(0, 1, weight=5)
 3
 4
   G.add edge(1, 2, weight=1)
 5
 6
   G.add edge(2, 3, weight=2)
 8
   G.add edge(3, 0, weight=6)
 9
10
   G.add edge(5, 6, weight=3)
11
12
13
   G.add edge(5, 7, weight=7)
14
   G.add edge(7, 2, weight=2)
15
16
17
18
19
20
21
22
```

with weights!