Algorithms and Data Structures for Data Science

Ne\ ot Rt & Graph Traversals

CS 277 April 3,2024
Brad Solomon

UNIVERSITY OF AN
®\
ILLINOIS ®
URBANA-CHAMPAIGN
Department of Computer Science A \.',
~ / I_ /



Learning Objectives

Practice using NetworkX to build and explore grapm
\/-
k}>

Implement breadth and depth traversals on graphs /‘D

Extend NetworkX for vﬂghted and directed graphs Q

directed g
.
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NetworkX Graph ADT
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getVertices() —> “St(g;.nodes()) < | "t D.ctioensy

getEdges(v) —> Glv] — (@dges of N2le Y
——

areAdjacent(u, v) —> G.has_edge(u,v) — Tfﬂ
— = false_

Insert
insertVertex(v) —> G.add _node(v)

insertEdge(u, v) —> G.add_edge(u, v)

\_/

Remove

removeVertex(v) —> G.remove_node(v)

removekdge(u, v) —> G.remove_edge(u, v)



Graph Practice 1: Build the following graph
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Graph Practice 1: Build the following graph

We can build a graph in NetworkX by adding edges one at a time:

1/|G = nx.Graph()
2
3|G.add edge (0, 1)
4
5/G.add edge (1, 2)
6
7|G.add _edge (2, 3)
8
9| G.add edge (3, 0)
10
11| G.add edge (5, 6)
12
13| G.add edge (5, 7)
14
15| G.add _edge (7, 2)
16
17
18
19
20
21




Graph Practice 1: Build the following graph

Given a list of edges, we can build the graph all at once
(%, Gaph ()

G = nx.Graph([(0, 1), (0, 3), (1, 2), (2, 3), (2, 7), (5, 6), (5, 7)])
gl

Given a NumPy matrix, we can build the graph all at once

—

G = nx.Graph(<NumPy Adjacency Matrix>)

Given a file in format edge list or adjacency IisA;( ,

>
v o | 3 N Storage
G = nx.read edgelist(<edgelList file>) X (ost
At ( ﬁh

G = nx. read adjlist(<adjList file>)
P Why not adjacency matrix?




Graph Practice 2: Remove all odd vertices
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Graph Practice 2: Remove all odd vertices

G.nodes() by default returns a dictionary.

nodes = list(G.nodes()) 4_”/>

for n in nodes:

ifn% 2 ==1:

G.remove node (n)
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Graph Practice 3: Find the highest degree vertex

/'//ée

J

M b§.\’ 2)5’5




Graph Practice 3: Find the highest degree vertex @

We can build a graph in NetworkX by adding edges one at a time:

max = -1
v = None

for n in G.nodes():
if len(G[n].keys()) > max:
max = len(G[n].keys())
v =n

print (v, max)
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Graph Traversals

There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:
Gt s
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g Z AN
2\ ez
OO >>0777
(\/ . . .
e Rooted e Arbitrary starting point
« Acyclic « Can have cycles
e Clear base cases (‘doneness’) e Must track visited nodes directly
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Slmple BFS Traversal 1) create nd a visit list
2) Initialize both to contain our start
4> 3) While queue not empty:
Remove front vertex of queue
Check if each edge has been seen before

Add unvisited edges to queue (and list)
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Slmple BFS Traversal 1) cCreate a queue and a visit list @
\V’ AN LE = 2) Initialize both to contain our start
3) While queue not empty:

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

Zack 7.7‘7: Ty Whatis my runtime?
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Simple BFS Traversal  Shorkst 1™ flon gl ot
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~ What is the shortest distance from A to H?

S>D=H _ ¥Yx ~
A N

( \L What is the shortest path from A to H?
&2
> What is the shortest path from A to F?
P[C)/V\ (3 to l"/ C -
— - T
5
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— | What is the shortest distance from A to F?
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Simple BFS Traversal

Al

What data structure is this? g tee |




Simple BFS Traversal

A minimum spanning tree is a tree formed by a subset
of graph edges such that all vertices are connected with

\

the smallest total possible edge weight

= 77
On a undirected graph this MST can be
built by tracking discovery edges during a BFS traversal
TNQ Qn(les S}l(yfﬂg* Pa\'h Ptom ﬁ’ 9 07\\/‘Hr\ s

We call the remaining edges cross edges. What can\lsay

about a graph with at least one cross edge?
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Traversal: BFS

If we modify our BFS traversal algorithm, we can track
both distances and discovery edges!
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Traversal: BFS

A O fone

B =1
Replace ‘visited' list with a - ;” i— A
distance and a previous / HL= % A

D/ At Q =\ A‘
When we add to queue, E Ltl<3 B
record previous. F X C_
Wh tex f ) > E

en we process vertex from g - D

queue, record distance. Fleath

@sited” vertices have Queue A
either distance or previous
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Traversal: BFS

Replace‘visited'list with a
distance and a previous

When we add to queue,
record previous.

/
51)“/ *es’;

When we process vertex from
path

queue, record distance.

“Unvisited” vertices have Queue
neither distance or previous
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BFS Traversal using NetworkX

There are many different methods for running a BFS (different output):

1|G = nx.random regular graph(3, 6) + e ) 4
2 L L V‘TC(WSO] W TP
3|print(list (nx.bfs edges (G, 0))) B é -?('\é’lv\

4 _ '

5/print(list(nx.bfs predecessors (G, 0)))

6

7| print (nx.descendants_at distance (G, O, 2}’) ;\_ V,I'
9| print (nx.descendants_at _distance(G, O, y) Q}S (e

10 /

11| print (nx.descendants_at distance (G, O, %‘V)

12

13| print (nx.descendants_at distance(G, O, i?»))

14

15|T = nx.bfs_ tree (G, 0)

16

17

18

19

20

21

22
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Traversal: DFS

1) Create a stack and a visit list
— ¢

2) Initialize both to contain our start

3) While stack not empty:
Use top() to look at current vertex
If no unvisited children, pop()

Otherwise, push() the first unvisited child



Traversal: DFS Do we still make a spanning tree? @
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Does distance have meaning here?

———

No, no distere  meanas

Discovery Edge
Do our edge labels have meaning here?
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DFS Traversal using NetworkX
What can the BFS do that the DFS cannot do?
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G = nx.random regular graph (V T

print (list(nx.dfs _edges (G, 0)))

print(list(nx.dfs_predecessors (G, 0)))

,\\,Z,LLi
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print(list (n@ 0))) C_\

T = nx.dfs_tree (G, 0)
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DFS vs BFS Runtime w)
DFs: (/ (/\ van) BFS: 0(”
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DFS vs BFS 22
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Where do we go from here? @

Consider: How does our implementation change for weights?
for directed edges?

—

Consider: What are some common graph algorithms / uses?
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“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0



http://csunplugged.org/minimal-spanning-trees/

Graph Practice 4: Build a weighted graph

We can build a graph in NetworkX by adding edges one at a time:
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G

G.

G.

= nx.Graph()
add_edge (0,

add edge (1,

.add edge (2,
.add_edge (3,
.add _edge (5,
.add_edge (5,

.add_edge (7,

weight=5)
weight=1)
weight=2)
weight=6)
weight=3)
weight=7)

weight=2)

with weights!



Weighted Directed Graphs




Graph Practice 5: Build a directed weighted graph
We can build a directed graph in NetworkX by using a DiGraph() object:

1|6 = nx.DiGraph() with weights!
2
3|G.add edge (0, 1, weight=5)
4
5/G.add edge(l, 2, weight=1l)
6
7|G.add _edge(2, 3, weight=2)
8
9|G.add _edge (3, 0, weight=6)
10
11| G.add edge (5, 6, weight=3)
12
13| G.add _edge (5, 7, weight=7)
14
15| G.add _edge (7, 2, weight=2)
16
17
18
19
20
21




