
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

April 3, 2024

Graph Traversals

Learning Objectives

Practice using NetworkX to build and explore graphs

Implement breadth and depth traversals on graphs

Extend NetworkX for weighted and directed graphs

NetworkX Graph ADT
Find

Insert

Remove

getVertices() —> list(G.nodes())

getEdges(v) —> G[v]

areAdjacent(u, v) —> G.has_edge(u, v)

insertVertex(v) —> G.add_node(v)

insertEdge(u, v) —> G.add_edge(u, v)

removeVertex(v) —> G.remove_node(v)

removeEdge(u, v) —> G.remove_edge(u, v)

Graph Practice 1: Build the following graph

1

0

3

2

7

5

6

Graph Practice 1: Build the following graph
We can build a graph in NetworkX by adding edges one at a time:

G = nx.Graph()

G.add_edge(0, 1)

G.add_edge(1, 2)

G.add_edge(2, 3)

G.add_edge(3, 0)

G.add_edge(5, 6)

G.add_edge(5, 7)

G.add_edge(7, 2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Graph Practice 1: Build the following graph
Given a list of edges, we can build the graph all at once

G = nx.Graph([(0, 1), (0, 3), (1, 2), (2, 3), (2, 7), (5, 6), (5, 7)])

Given a file in format edge list or adjacency list

G = nx.read_edgelist(<edgeList file>)

G = nx. read_adjlist(<adjList file>)

Given a NumPy matrix, we can build the graph all at once

G = nx.Graph(<NumPy Adjacency Matrix>)

Why not adjacency matrix?

Graph Practice 2: Remove all odd vertices

Graph Practice 2: Remove all odd vertices
G.nodes() by default returns a dictionary.

nodes = list(G.nodes())

for n in nodes:

 if n % 2 == 1:

 G.remove_node(n)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Graph Practice 3: Find the highest degree vertex

Graph Practice 3: Find the highest degree vertex
We can build a graph in NetworkX by adding edges one at a time:

max = -1
v = None

for n in G.nodes():

 if len(G[n].keys()) > max:

 max = len(G[n].keys())

 v = n

print(v, max)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Graph Traversals
There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

• Rooted
• Acyclic
• Clear base cases (‘doneness’)

• Arbitrary starting point
• Can have cycles
• Must track visited nodes directly

Tree traversals won’t work — lets compare:

Simple BFS Traversal

A

C D

E

B

G H

F

1) Create a queue and a visit list

2) Initialize both to contain our start

3) While queue not empty:

Visited

Queue

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

Simple BFS Traversal

A

C D

E

B

G H

F

1) Create a queue and a visit list

2) Initialize both to contain our start

3) While queue not empty:

Visited

Queue

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

G H F E D C B A

A B C D E F H G

What is my runtime?

Simple BFS Traversal

A

C D

E

B

G H

F

What is the shortest distance from A to H?

What is the shortest distance from A to F?

What is the shortest path from A to H?

What is the shortest path from A to F?

Simple BFS Traversal

A

C D

E

B

G H

F

What data structure is this?

Simple BFS Traversal

A

C D

E

B

G H

F

A minimum spanning tree is a tree formed by a subset
of graph edges such that all vertices are connected with
the smallest total possible edge weight

On an unweighted, undirected graph this MST can be
built by tracking discovery edges during a BFS traversal

We call the remaining edges cross edges. What can I say
about a graph with at least one cross edge?

A

C D

E

B

G H

F

Traversal: BFS
If we modify our BFS traversal algorithm, we can track
both distances and discovery edges!

A

C D

E

B

G H

F

A

C D

E

B

G H

F

Traversal: BFS Vertex Distance Previous

A

B

C

D

E

F

G

H

A

C D

E

B

G H

F

Queue

Replace ‘visited’ list with a
distance and a previous

When we add to queue,
record previous.

When we process vertex from
queue, record distance.

“Unvisited” vertices have
neither distance or previous

Vertex Distance Previous

A 0 -
B 1 A

C 1 A

D 1 A

E 2 B

F 2 C

G 3 E

H 2 D

Traversal: BFS

Queue

Replace ‘visited’ list with a
distance and a previous

When we add to queue,
record previous.

When we process vertex from
queue, record distance.

G H F E D C B A

A

C D

E

B

G H

F

“Unvisited” vertices have
neither distance or previous

BFS Traversal using NetworkX

G = nx.random_regular_graph(3, 6)

print(list(nx.bfs_edges(G, 0)))

print(list(nx.bfs_predecessors(G, 0)))

print(nx.descendants_at_distance(G, 0, 0))

print(nx.descendants_at_distance(G, 0, 1))

print(nx.descendants_at_distance(G, 0, 2))

print(nx.descendants_at_distance(G, 0, 3))

T = nx.bfs_tree(G, 0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

There are many different methods for running a BFS (different output):

Traversal: DFS

A

C

D

E

B
F

G

H

J
I

Traversal: DFS 1) Create a stack and a visit list

2) Initialize both to contain our start

3) While stack not empty:

Use top() to look at current vertex

If no unvisited children, pop()

Otherwise, push() the first unvisited child

A

C

D

E

B
F

G

H

J
I

Traversal: DFS

Discovery Edge

Back Edge

A

C

D

E

B
F

G

H

J
I

Does distance have meaning here?

Do our edge labels have meaning here?

Do we still make a spanning tree?

DFS Traversal using NetworkX

G = nx.random_regular_graph(3, 6)

print(list(nx.dfs_edges(G, 0)))

print(list(nx.dfs_predecessors(G, 0)))

print(list(nx.find_cycle(G, 0)))

T = nx.dfs_tree(G, 0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

What can the BFS do that the DFS cannot do?

DFS vs BFS Runtime
DFS: BFS:

Use Cases: Use Cases:

Peak Memory Cost: Peak Memory Cost:

DFS vs BFS

Where do we go from here?
Consider: How does our implementation change for weights?

for directed edges?

Consider: What are some common graph algorithms / uses?

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Graph Practice 4: Build a weighted graph
We can build a graph in NetworkX by adding edges one at a time:

G = nx.Graph()

G.add_edge(0, 1, weight=5)

G.add_edge(1, 2, weight=1)

G.add_edge(2, 3, weight=2)

G.add_edge(3, 0, weight=6)

G.add_edge(5, 6, weight=3)

G.add_edge(5, 7, weight=7)

G.add_edge(7, 2, weight=2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

with weights!

Weighted Directed Graphs

A

C

D

E

B

F G

H
7

5
4

10
7

5

3

6

2
5

4

3

Graph Practice 5: Build a directed weighted graph
We can build a directed graph in NetworkX by using a DiGraph() object:

G = nx.DiGraph()

G.add_edge(0, 1, weight=5)

G.add_edge(1, 2, weight=1)

G.add_edge(2, 3, weight=2)

G.add_edge(3, 0, weight=6)

G.add_edge(5, 6, weight=3)

G.add_edge(5, 7, weight=7)

G.add_edge(7, 2, weight=2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

with weights!

