Algorithms and Data Structures for Data Science

Ne\ ot Rt & Graph Traversals

CS 277 April 3,2024
Brad Solomon

UNIVERSITY OF AN
®\
ILLINOIS ®
URBANA-CHAMPAIGN
Department of Computer Science A \.',
~ / I_ /

Learning Objectives

Practice using NetworkX to build and explore grapm
\/-
k}>

Implement breadth and depth traversals on graphs /‘D

Extend NetworkX for vﬂghted and directed graphs Q

directed g
.

- NX G-m?\'lc)

NetworkX Graph ADT

Find 7 D, d e) j
in \ "y
) | }oomey Y

getVertices() —> “St(g;.nodes()) < | "t D.ctioensy

getEdges(v) —> Glv] — (@dges of N2le Y
——

areAdjacent(u, v) —> G.has_edge(u,v) — Tfﬂ
— = false_

Insert
insertVertex(v) —> G.add _node(v)

insertEdge(u, v) —> G.add_edge(u, v)

_/

Remove

removeVertex(v) —> G.remove_node(v)

removekdge(u, v) —> G.remove_edge(u, v)

Graph Practice 1: Build the following graph

N(j((n/ofly)(L 9
9(4\&\ ((hés'.

‘, Male new gigpn 3by%c
G—: [\X.G’“%PL)C>

i

N, Add arey @b
onte

Graph Practice 1: Build the following graph

We can build a graph in NetworkX by adding edges one at a time:

1/|G = nx.Graph()
2
3|G.add edge (0, 1)
4
5/G.add edge (1, 2)
6
7|G.add _edge (2, 3)
8
9| G.add edge (3, 0)
10
11| G.add edge (5, 6)
12
13| G.add edge (5, 7)
14
15| G.add _edge (7, 2)
16
17
18
19
20
21

Graph Practice 1: Build the following graph

Given a list of edges, we can build the graph all at once
(%, Gaph ()

G = nx.Graph([(0, 1), (0, 3), (1, 2), (2, 3), (2, 7), (5, 6), (5, 7)])
gl

Given a NumPy matrix, we can build the graph all at once

—

G = nx.Graph(<NumPy Adjacency Matrix>)

Given a file in format edge list or adjacency IisA;(,

>
v o | 3 N Storage
G = nx.read edgelist(<edgelList file>) X (ost
At (ﬁh

G = nx. read adjlist(<adjList file>)
P Why not adjacency matrix?

Graph Practice 2: Remove all odd vertices
W15 0y 9%abh ()

Graph Practice 2: Remove all odd vertices

G.nodes() by default returns a dictionary.

nodes = list(G.nodes()) 4_”/>

for n in nodes:

ifn% 2 ==1:

G.remove node (n)

OWoJdJdoouUld WN PR

Graph Practice 3: Find the highest degree vertex

/'//ée

J

M b§.\’ 2)5’5

Graph Practice 3: Find the highest degree vertex @

We can build a graph in NetworkX by adding edges one at a time:

max = -1
v = None

for n in G.nodes():
if len(G[n].keys()) > max:
max = len(G[n].keys())
v =n

print (v, max)

e e
WNhNROoOWwOJIOUIdWN KR

R R R
ot

NNRRR
RO WO

N
N

Graph Traversals

There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:
Gt s

&
,
g Z AN
2\ ez
OO >>0777
(\/ . . .
e Rooted e Arbitrary starting point
« Acyclic « Can have cycles
e Clear base cases (‘doneness’) e Must track visited nodes directly

- —

Slmple BFS Traversal 1) create nd a visit list
2) Initialize both to contain our start
4> 3) While queue not empty:
Remove front vertex of queue
Check if each edge has been seen before

Add unvisited edges to queue (and list)

visted | A B CPE T HG

Slmple BFS Traversal 1) cCreate a queue and a visit list @
\V’ AN LE = 2) Initialize both to contain our start
3) While queue not empty:

Remove front vertex of queue

Check if each edge has been seen before

Add unvisited edges to queue (and list)

Zack 7.7‘7: Ty Whatis my runtime?

._k
e NORCRRRY, O 4 ¢)

eIy (Jerhes ouoy €
M (e Tw.\(Q

Visited | A B CDETFHG

o

Simple BFS Traversal Shorkst 1™ flon gl ot
7

~ What is the shortest distance from A to H?

S>D=H _ ¥Yx ~
A N

(\L What is the shortest path from A to H?
&2
> What is the shortest path from A to F?
P[C)/V\ (3 to l"/ C -
— - T
5
S horet 4 b A
— | What is the shortest distance from A to F?
— /

Simple BFS Traversal

Al

What data structure is this? g tee |

Simple BFS Traversal

A minimum spanning tree is a tree formed by a subset
of graph edges such that all vertices are connected with

\

the smallest total possible edge weight

= 77
On a undirected graph this MST can be
built by tracking discovery edges during a BFS traversal
TNQ Qn(les S}l(yfﬂg* Pa\'h Ptom ﬁ’ 9 07\\/‘Hr\ s

We call the remaining edges cross edges. What can\lsay

about a graph with at least one cross edge?
L7 Thre IS d C ! (lQ

9)9(

Traversal: BFS

If we modify our BFS traversal algorithm, we can track
both distances and discovery edges!

p— —
7 T
S hor kst (Vs o 4t

Pq’(lﬂ.

Traversal: BFS

A O fone

B =1
Replace ‘visited' list with a - ;” i— A
distance and a previous / HL= % A

D/ At Q =\ A‘
When we add to queue, E Ltl<3 B
record previous. F X C_
Wh tex f) > E

en we process vertex from g - D

queue, record distance. Fleath

@sited” vertices have Queue A
either distance or previous
'\

Traversal: BFS

Replace‘visited'list with a
distance and a previous

When we add to queue,
record previous.

/
51)“/ *es’;

When we process vertex from
path

queue, record distance.

“Unvisited” vertices have Queue
neither distance or previous

m O O W P

NwNNHHHOEZ
IE

-n
o m 66 W > P> P

BFS Traversal using NetworkX

There are many different methods for running a BFS (different output):

1|G = nx.random regular graph(3, 6) + e) 4
2 L L V‘TC(WSO] W TP
3|print(list (nx.bfs edges (G, 0))) B é -?('\é’lv\

4 _ '

5/print(list(nx.bfs predecessors (G, 0)))

6

7| print (nx.descendants_at distance (G, O, 2}’) ;_ V,I'
9| print (nx.descendants_at _distance(G, O, y) Q}S (e

10 /

11| print (nx.descendants_at distance (G, O, %‘V)

12

13| print (nx.descendants_at distance(G, O, i?»))

14

15|T = nx.bfs_ tree (G, 0)

16

17

18

19

20

21

22

Traversal: DFS () Cleate <Rkt P Oy

Ulnle stack fnoh eupty!)
= Us4e Lop() SO) d'_ CW /ren \
L il Yo sk weh'

')

' C
T‘P NI upuskd CL.U’M P01> >

Visted
?_D C B CF H & I3
?*Q(K X

Traversal: DFS

1) Create a stack and a visit list
— ¢

2) Initialize both to contain our start

3) While stack not empty:
Use top() to look at current vertex
If no unvisited children, pop()

Otherwise, push() the first unvisited child

Traversal: DFS Do we still make a spanning tree? @
> ‘(C’?.' /4}(\ Atoves, g v

yam\:'\ﬁ Sd!ff *
¥ viuaiohled graphs
Does distance have meaning here?

———

No, no distere meanas

Discovery Edge
Do our edge labels have meaning here?

G Teg! s s OgtE (lost Y’(/5¢

,, Back Edge .
s ¢ Cycle

DFS Traversal using NetworkX
What can the BFS do that the DFS cannot do?

OWoJdJdoouUld WN PR

NNNRRRRRRBRRRRR
NFROWONOUIBWNRO

G = nx.random regular graph (V T

print (list(nx.dfs _edges (G, 0)))

print(list(nx.dfs_predecessors (G, 0)))

,\\,Z,LLi
._/

print(list (n@ 0))) C_\

T = nx.dfs_tree (G, 0)

T \ Q ﬂ(—u,,
(s

d
\ J.‘o\\ oAy 0712 P\\\
V¢ '
/ Q)fﬂ(/,ﬂus
—— (Yle detecta,/

— ,%sﬁ;(,(&

T

v

DFS vs BFS Runtime w)
DFs: (/ (/\ van) BFS: 0(”

Use Cases: Spana, e Use Cases: SPcmny /e
Dot Cylles C yles
@gﬁ Pél"(l/l >
Peak Mem Peak Memory Cost: .
C lonsest pet ¥ L,7 Ba(} peak Mwmagy = W'Q’L ‘ff
= -

guisde class gope’ Yo ref wald ot pilb s Uually do 30

Mud, thore Flexble ‘N ude Cased (e, W of graph

. ac
Cletce oF e’

DFS vs BFS 22

S / ' ‘

A A/ 0
0

1 Q) ‘V

Ne G N
pX @ @

B ®
4 C P b

o

"o ¢

Where do we go from here? @

Consider: How does our implementation change for weights?
for directed edges?

—

Consider: What are some common graph algorithms / uses?

——
—— e
\j

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Graph Practice 4: Build a weighted graph

We can build a graph in NetworkX by adding edges one at a time:

OWoJdJdoouUld WN PR

G

G.

G.

= nx.Graph()
add_edge (0,

add edge (1,

.add edge (2,
.add_edge (3,
.add _edge (5,
.add_edge (5,

.add_edge (7,

weight=5)
weight=1)
weight=2)
weight=6)
weight=3)
weight=7)

weight=2)

with weights!

Weighted Directed Graphs

Graph Practice 5: Build a directed weighted graph
We can build a directed graph in NetworkX by using a DiGraph() object:

1|6 = nx.DiGraph() with weights!
2
3|G.add edge (0, 1, weight=5)
4
5/G.add edge(l, 2, weight=1l)
6
7|G.add _edge(2, 3, weight=2)
8
9|G.add _edge (3, 0, weight=6)
10
11| G.add edge (5, 6, weight=3)
12
13| G.add _edge (5, 7, weight=7)
14
15| G.add _edge (7, 2, weight=2)
16
17
18
19
20
21

