Algorithms and Data Structures for Data Science

Graph Implementations 3

CS 277 April 1,2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Practice implementing complex data structures (graphs)
Compare and contrast different implementations

Review Big O concepts in the context of graphs

Graph ADT
Find
getVertices() — return the list of vertices in a graph
getEdges(v) — return the list of edges that touch the vertex v
areAdjacent(u, v) — returns a bool based on if an edge from u to v exists
Insert
insertVertex(v) — adds a vertex to the graph
insertEdge(u, v) — adds an edge to the graph
Remove

removeVertex(v) — removes a vertex from the graph

removeEdge(u, v) — removes an edge from the graph

Graph Implementation: Edge List

Vi= Rl o |
Expressed as O(f)

@ Space n+m

insertVertex(v 1*
W ©, @ v
_______________________ removeVertex(v) n+m
U U Vv
insertEdge(u, v) 1*
Vv U | W
removeEdge(u, v) m
W V | W
getEdges(v) m
VA W YA

areAdjacent(u, v) m

Graph Implementation: Adjacency Matrix

Adjacency Matrix
Expressed as O(f)

|V|=n, |E|=m

Space n2
insertVertex(v) n*
removeVertex(v) n*
insertEdge(u, v) 1
removeEdge(u, v) 1
getEdges(v) n

areAdjacent(u, v) 1

Graph Implementations

| want a graph that uses the least amount of memory possible

| want a graph that has the fastest lookup for specific edges

| want a graph that is efficient for a sparse dataset

Graph Implementation: Edge List + ?
|V|= n, |E|=m

/®\
© >—0
u u \'J
v \'J W
W u '
Z W Z

Adjacency List
|IV|=n, |[E|]=m

@\ Vertex Storage:
R Edge Storage:
v _E__ap >
z \}

Adjacency List
|IV|= n, |E|= m

@\ Vertex Storage:
®/ @ @

! y V [—> W

I Edge Storage:

Adjacency List
|IVI= n, |E|= m
(W getVertices():

—————————

Adjacency List
|IV|=n, |E|=m
o) getEdges(v):

—————————

Adjacency List
|V|= n, |E|=m
o) areAdjacent(u, v):

—————————

Adjacency List
IVI= n, |[E|= m
(W removeVertex(v):

—————————

Simple Adjacency List

Vi=n, |E|=m : :
V] r | E What’s wrong with our implementation?

How can we fix it?

Adjacency List =
AN ®

IVI=n, |E|=m @

Adj List Node:

Prev Edge Next

Vv \"Y)
Mirror

This is still a‘lie’ but a more accurate one!

Adjacency List

/\

W @

insertVertex(v):

Adjacency List

/\

W @

insertEdge(u, v):

Adjacency List

/\

W @

removeEdge(u, v):

Adjacency List

/\

W @

_______ Vv wW
1 Cons:
=) fS

Pros:

|IV|=n, |E|=m

Edge List Adjacency Matrix Adjacency List
Expressed as O(f)
n+m n2

Space

insertVertex(v) 1* n*
removeVertex(v) m** n*
insertEdge(u, v) 1 1
removeEdge(u, v) m 1

getEdges(v) m n

areAdjacent(u, v) m 1

Where do we go from here?

Consider: How does our implementation change for weights?
for directed edges?

Consider: How can we implement traversal on graphs?

Consider: What are some common graph algorithms / uses?

Graphs in Python: NetworkX Package

NetworkX uses concepts from all three implementation methods
A graph can be built from an edge list, adjacency matrix, or adjacency list
A graph can be saved or output as any of the three formats

Many algorithms (and traversals) are built-in.

Creating a NetworkX graph
G = nx.Graph()

G = nx.Graph(edgeList)
G.add _node(label, **kwargs)

G.add _edge(vl, v2, **kwargs)

NetworkX Example

import networkx as nx
G = nx.Graph()
G.add edge("A", “B")

G.add edge("B", "C", weight=5)

OWodJdJdooUlbd WN PR

G.add edge ("A", "C", anything="Bob", I="was", want="here")

12| print (G.nodes())

15| print (G.edges())

18| print (G.edges (data=True))

NetworkX Example

1| import networkx as nx

2

3|G = nx.Graph()

4

5({G.add node (“A")

6

7|G.add node("B", name="Bob")
8

9|G.add node("C", anything="Bob", I="was", want="here")
10
11| print(G.nodes())

12

13| print (G.nodes (data=True))
14

15

16

17

18

19
20
21

NetworkX Example

1| G=nx.random regular graph(3, 6)
2

3|nx.draw (G, edge color='k', width=2, with labels=True)
4

5|plt.show ()

6

7|m = nx.adjacency matrix(G)

8| print (m. todense())

9

10

11

12

13

14

15|adjL = nx.generate_adjlist (G)
16| for line in adjL:

17 print (line)

18

19
20
21
22

Graphs in Python: NetworkX Package

Networkx (and Python packages in general) can do a lot for you!
But they can sometimes make design decisions that don’t work for you.

Ex: An adjacency list in NetworkX doesn't duplicate edges!

