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Learning Objectives

Practice implementing complex data structures (graphs)
Compare and contrast different implementations

Review Big O concepts in the context of graphs




Graph ADT
Find
getVertices() — return the list of vertices in a graph
getEdges(v) — return the list of edges that touch the vertex v
areAdjacent(u, v) — returns a bool based on if an edge from u to v exists
Insert
insertVertex(v) — adds a vertex to the graph
insertEdge(u, v) — adds an edge to the graph
Remove

removeVertex(v) — removes a vertex from the graph

removeEdge(u, v) — removes an edge from the graph



Graph Implementation: Edge List
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Graph Implementation: Adjacency Matrix

Adjacency Matrix
Expressed as O(f)

|V|=n, |E|=m

Space n2
insertVertex(v) n*
removeVertex(v) n*
insertEdge(u, v) 1
removeEdge(u, v) 1
getEdges(v) n

areAdjacent(u, v) 1



Graph Implementations

| want a graph that uses the least amount of memory possible

| want a graph that has the fastest lookup for specific edges

| want a graph that is efficient for a sparse dataset




Graph Implementation: Edge List + ?
|V|= n, |E|=m
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Adjacency List
|IV|=n, |[E|]=m
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Adjacency List
|IV|= n, |E|= m
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Adjacency List
|IVI= n, |E|= m
(W getVertices():
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Adjacency List
|IV|=n, |E|=m
o) getEdges(v):
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Adjacency List
|V|= n, |E|=m
o) areAdjacent(u, v):
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_________




Adjacency List
IVI= n, |[E|= m
(W removeVertex(v):
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_________




Simple Adjacency List
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How can we fix it?
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Adjacency List =
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This is still a‘lie’ but a more accurate one!



Adjacency List
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insertVertex(v):
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Adjacency List
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insertEdge(u, v):
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Adjacency List
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removeEdge(u, v):
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Adjacency List
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|IV|=n, |E|=m

Edge List Adjacency Matrix Adjacency List
Expressed as O(f)
n+m n2
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Where do we go from here?

Consider: How does our implementation change for weights?
for directed edges?

Consider: How can we implement traversal on graphs?

Consider: What are some common graph algorithms / uses?




Graphs in Python: NetworkX Package

NetworkX uses concepts from all three implementation methods
A graph can be built from an edge list, adjacency matrix, or adjacency list
A graph can be saved or output as any of the three formats

Many algorithms (and traversals) are built-in.




Creating a NetworkX graph
G = nx.Graph()

G = nx.Graph(edgeList)
G.add _node(label, **kwargs)

G.add _edge(vl, v2, **kwargs)




NetworkX Example

import networkx as nx
G = nx.Graph()
G.add edge("A", “B")

G.add edge("B", "C", weight=5)
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G.add edge ("A", "C", anything="Bob", I="was", want="here")

12| print (G.nodes())

15| print (G.edges())

18| print (G.edges (data=True))




NetworkX Example

1| import networkx as nx

2

3|G = nx.Graph()

4

5({G.add node (“A")

6

7|G.add node("B", name="Bob")
8

9|G.add node("C", anything="Bob", I="was", want="here")
10
11| print(G.nodes())

12

13| print (G.nodes (data=True))
14

15

16

17

18

19
20
21




NetworkX Example

1| G=nx.random regular graph(3, 6)
2

3|nx.draw (G, edge color='k', width=2, with labels=True)
4

5|plt.show ()

6

7|m = nx.adjacency matrix(G)

8| print (m. todense())

9

10

11

12

13

14

15|adjL = nx.generate_adjlist (G)
16| for line in adjL:

17 print (line)

18

19
20
21
22




Graphs in Python: NetworkX Package

Networkx (and Python packages in general) can do a lot for you!
But they can sometimes make design decisions that don’t work for you.

Ex: An adjacency list in NetworkX doesn't duplicate edges!




