Algorithms and Data Structures for Data Science

Functions and Objects

CS 277 January 23, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

CS 277 should be low-stress medium workload

If you are struggling to complete assignments, ask for help!
1. Attend office hours (see schedule on website)
2. Email professor (Include CS 277 in subject heading)

3. Talk before or after class

4. Ask questions online through Piazza or Discord

Course Discord Link on Prairielearn

Current link invite valid for 7 days

Strongly encouraged to join before link invalidates

Lab / Course Feedback

Feedback is necessary to keep course pacing appropriate for all
Online Asynchronous Options:

Discord, Piazza, Email, Feedback Forms

In-Person:

In-class questions, labs, office hours

This is especially important in the early stages of the class.

Learning Objectives
Continue reviewing Python Fundamentals
Continue building a programming pipeline

Discuss and practice defining interfaces for computational problems

Programming Toolbox: Data Type Casting

Variables in Python are strongly typed and dynamically typed

1.1
"3
"4

N & M

x"
print (int(x))

print (float(y))

ooJdJouUlkd WN R

print(int(z))

a True
12| b 5

14 | print(a - a)

16 | print(int(a))

18 | print (bool (b))

Programming Pipeline Part 2

1. Make sure you understand the problem

What is the input and output of the problem?

Can you

oreak the problem down into parts?

Do any of the sub-problems build off each other?

2. Solve (and test) each part one at a time

What should the output be given an input?

Are there any edge cases you are missing?

Debugging your Code (PrairieLearn)

“l submitted my code and didnt get points. Now what?”

X [0]/5] Check 277student() Random Tests v
X [0]/5] Check checkSorted() Tests v
X [0/5] Check geqThan() Random Tests v
X [0/5] Check getGrade() Tests A
Max points: 5

Earned points: 0

Message

- Grading was skipped because an earlier test failed -

Debugging your Code (PrairieLearn)

Autograder is designed to give feedback on what went wrong!

X [0/5] Check geqThan() Random Tests A
Max points: 5

Earned points: 0

Message

The callable 'geqThan' supplied in your code failed with an exception while it was bei
File "/grade/run/code_feedback.py", line 448, in call_user

return f(xargs, *xxkwargs)
TypeError: geqThan() missing 1 required positional argument: 'boundary'

Debugqging your Code (PrairieLearn)

getSmallestEven() has the following return message:

'Test: 55, 84, 27' is None or not defined

electricBill() has the following return message:

"Test: 505' looks good
'Test: 49' looks good

"Test: 477" is inaccurate

Python Toolbox: Print Statements

print("ABC"+"DEF"+str(x))

print(f"Hello {x}, its nice to meet you!")

print("{}, {}, {}".format(1, 2, 3))

Python Toolbox

: Print Statements

oJounbdWPNER

def buildString(inList):

i= nwn

for i in inlist:
i+=i

return i

O

Programming Toolbox: Functions

Functions are defined by ‘def <name>(<parameters>):’

1| def getTotalTime (checkin, checkout):
2

3

4 | def getSmallestEven(x, y, z):

5

6

7| def electricBill (watts):

8

9
10 | print (getTotalTime ("09:00:00","17:31:53"))
11
12
13 | print(getSmallestEven(2, 1, 3))
14
15
16 | print (electricBill (40))
17
18

Programming Toolbox: Functions

Functions in Python are everywhere!

RoOwoodJdJooUbkd WN R

BB

def fl(x, y):
zZ =x+vy
return z

print(£f1(1, 3))

print (£1([0, 1, 2], [3, 4, 31))

SJounbd WDNR

True

oo
nn
()]

print(a - a)

operator.Ell(a, b) 1

operator._ EXl (a, b)

Return a + b, for a and b numbers.

__add__(a, b) alsoworks for lists!

What did this return? Why?

Python Toolbox: Functions

What does it mean to be the ‘building block of programming’?

Python is built on objects, objects are [partially] defined by functions

x = "string"
y = x.upper ()

print(y)
print(y.lower())

codoUldWDNE

str.upper()

Return a copy of the string with all the cased characters [4] converted to uppercase. Note that
s.upper().isupper() might be False if s contains uncased characters or if the Unicode category

of the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 ‘Default Case Folding’ of the Unicode
Standard.

Python Toolbox: Functions

Learning how to read a function description is essential!

str.split(sep=None, maxsplit=- 1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplitis given, at
most maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is
not specified or -1, then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty
strings (for example, '1,,2"'.split("',"') returns ['1"', '', '2']). The sep argument may
consist of multiple characters (for example, '1<>2<>3"'.split('<>"') returns ['1', '2', '3']).
Splitting an empty string with a specified separator returns ['"'].

For example:

'1,2,3"'.split(*,")
[Ill' |2|' |3|]

'1,2,3".split(',"', maxsplit=1)
[Ill' |2,3|]

'1,2,,3, "'.split(',")
[Ill' I2l' ll’ I3I’ II]

Python Toolbox: Functions

Learning how to read a function description is essential!

str.split(sep=None, maxsplit=— 1)
Return a list of the words in the string, us
most maxsplit splits are done (thus, the li
not specified or -1, then there is no limit

If sep is given, consecutive delimiters are

strings (for example, '1,,2".split(",")
consist of multiple characters (for exampl
Splitting an empty string with a specified ¢

For example:

'1,2,3"'.split(*,")
[Ill, |2|’ |3|]

'1,2,3".split(',"', maxsplit=1)
[Ill, |2’3|]

'1,2,,3, "'.split(',")
[Ill, I2l, II’ I3I’ II]

When in doubt — read the docs!

https://docs.python.org/3.12/
Your favorite search engine can also go a long way!

Lets practice — what does the string strip() function do?

Programming Practice: Functions

It is also important to be able to read a function given code

OWooJdJooULrbd WN R

INPUT: None
OUTPUT: None
def £1():
print('Function A called')

INPUT: A Python object
OUTPUT: The same Python object unchanged
def £2 (input) :

print ("Function B called")

return input

INPUT: A function that accepts zero args
OUTPUT: The return value of the function
def £3 (input):

print ("Function C called")

return input ()

print(f1())

print(f2(5)+3)

print(f2("Hi")+" Bye")

Programming Practice: Functions

What gets printed when running the following function call?

OWooJdJooULrbd WN R

INPUT: None
OUTPUT: None
def £1():
print('Function A called')

INPUT: A Python object
OUTPUT: The same Python object unchanged
def £2 (input) :

print ("Function B called")

return input

INPUT: A function that accepts zero args
OUTPUT: The return value of the function
def £3 (input):

print ("Function C called")

return input ()

print(f3(f2(f1)))

Programming Practice: Functions

Each function is its own ‘frame’ or ‘scope’

1| # INPUT: None

2 | # OUTPUT: None

3| def £f1():

4 print('Function A called')
5

6| # INPUT: A Python object

7| # OUTPUT: The same Python object unchanged
8 | def £2 (input):

9 print ("Function B called")
10 return input
11

12 | # INPUT: A function that accepts zero args
13| # OUTPUT: The return value of the function
14 | def £3(input):

15 print ("Function C called")
16 return input ()
17

18 | print (£3(£2(£f1)))

Programming Practice: Functions

What happens when running the following function calls?

OWooJdJooULrbd WN R

INPUT: None
OUTPUT: None
def £1():
print('Function A called')

INPUT: A Python object
OUTPUT: The same Python object unchanged
def £2 (input) :

print ("Function B called")

return input

INPUT: A function that accepts zero args
OUTPUT: The return value of the function
def £3 (input):

print ("Function C called")

return input ()

print(f2(f1))

print(f3)

Programming Practice: Functions

What will the functions here print?

1| def increase(inval) :

2 inval+=1

3 return inval

4

5| def doubleInc(inval):

6 y = increase(inval)

7 y += increase(inval)

8 return y

9

10 | print(increase(5)) # should return 6
11

12

13

14

15 | print(doubleInc(7)) # should return 9
16

17

18

Programming Practice: Function Scope

def Hilbe v Each frame has its own variables.

return x

def £f2(z):
z = [0]

def £3(z):
z[0]=4

OWCodJdoUidWNR

11 | print (x)

13(a, b =2, 5
14 | print (f1(a, b))
15 | print(a, b)

17 | test = [0, 1, 2]
18 | £2 (test)
19 | print (test)

21 | £3 (test)
22 | print(test)

Programming Practice: Function Scope

def Hilbe v Each frame has its own variables.

return x

def £2(z): Global F1() F2() F3()

z = [0]

def £3(z):
z[0]=4

OWCodJdoUidWNR

11 | print (x)

Traceback (most recent call last)
/Users/bradsol/Desktop/UIUC/cs277 /website/assets/code/sp24/funcI0 public.ipynb
14 def f3(z):
15 z[0]=4
7/

print(x)
a, b=2, 5
print(fl(a, b))

: name 'x' is not defined

Programming Practice: Function Scope @

o Rl (N Each frame has its own variables.

3 return x

4

s |aet 2001 : Global F1() F2() F3()
7

8 | def £3(z):

9 z[0]=4

10

11

12

13|a, b =2, 5
14 | print (f1(a, b))
15 | print(a, b)

17 | test = [0, 1, 2]
18 | £2 (test)
19 | print (test)

21 | £3 (test)
22 | print(test)

Python Toolbox: Functions

Many built-in functions can take a variety of input arguments

import pandas

pd.read table('myFile.csv')

pd.read table('myFile.csv',delimiter=',")

OWoJdJoouLlrbd WN R

12 | pd.read table('myFile.csv’ ,delimiter=',', usecols = ['Netid', 'Grade'])

Programming Toolbox: Function Overloading

Two functions are overloaded when they have the same name but
different parameters.

1| def combine(x, y):

2 return [x, y]

3

4 | print (combine (5, 1))

5

6 | def combine(listl, list2):

7 return listl+list2

8

9| print(combine([1, 2], [3, 4]))
10

11 | def combine(x, listl, list2):
12 return [x]+listl+list2

13

14 | print(combine (0, [1, 2], [4, 5]))
15

16

17

18

19

Programming Toolbox: Function Overloading

To properly define an overloaded function, give default arguments.

1| def combine(x, y=None, listl = None, list2 = None):
2 out = [x]

3 if y:

4 out+=[y]

5 if listl:

6 out+=listl

7 if list2:

8 out+=1list2

9 return out
10
11 | print (combine (5, 1))
12
13
14 | print(combine (0, [1, 2], [4, 5]))
15
16
17 | print (combine (0, 1listl=[1, 2], list2=[4, 5]))
18
19

Programming Toolbox: Function Overloading @

For true freedom of input, use keyword *args and **kwargs

1| def combine(*args, **kwargs):

2 out = []

3

4 for a in args:

5 out. append (a)

6

7

8 for k, v in kwargs.items () :

9 print("{} = {}".format(k, Vv))
10 out+=v
11 return out
12
13
14 | print(combine(0, 1, 2, 3, 4, \
15| 1listl=[9, 2,3,1], list2=[8,7,2,1]1, \
16| 1list3 = [10]))
17
18
19

Object-Oriented Programming

An object is a conceptual grouping of variables and functions that make
use of those variables. A function associated with an object is a method.

Variables:

Methods:

Object-Oriented Programming

cl.area() c2.xpos == c3.Xpos getTotalArea(c4, c5, ..)

c2.ypos == c3.ypos

Object-Oriented Programming

An object is a conceptual grouping of variables and methods that make
use of those variables. You’ve been using these the entire time

Everything in Python is an object Variables:

x = “myString"

Type String

print(x.capitalize())

Value myString

print(x.find (“String"))

print (x.upper ()) Ref Count 1
print (x[3]) # _ getitem ()

11| print(x) # _ str () MethOdS:

WCodJouUdWNR

Object-Oriented Programming

Even things that don't have obvious function calls are (secretly) defined as
a method of some object.

1| a="3" 1| # For objects of type ‘string’
2| b=3 2| def add_ (self, o):
3| e=3.0 3
4 | d=True 4
5 5| # For objects of type ‘int’
6 | print(a + b) 6 def add (self, o):
7 7
8 | print(b + c) 8 _
9 9| # For objects of type ‘float’
10 | print(c > d) 10| def add (self, o):
11 ...
11
12 12
13 13
14 14| def gt (self, o):
15 15
16 16

Object-Oriented Programming

The collection of publicly accessible methods and variables that make up
an object is its interface. This includes none of the implementation details.

str.join(iterable)
Return a string which is the concatenation of the strings in iterable. A
TypeError will be raised if there are any non-string values in iterable,
including bytes objects. The separator between elements is the string
providing this method.

str.ljust(width[, fillchar])

Return the string left justified in a string of length width. Padding is done
using the specified fillchar (default is an ASCII space). The original string is
returned if width is less than or equal to len(s).

str.lower()

Return a copy of the string with all the cased characters [4] converted to
lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode
Standard.

str.1strip([chars])

https://docs.python.org/3/library/stdtypes.html#string-methods

https://docs.python.org/3/library/stdtypes.html#string-methods

Object-Oriented Programming @

We will discuss and use data structures in the context of their interface.

Ex: The string [data type] will have a few properties in any language

1| std::string x = "Hello World"; 1| x = "Hello World"
2 2

3| for(int i = x.length() - 1; i >= 0; --i){ 3/ i=1len(x) -1
4 std: :cout << x[i] << std::endl; 4| while(i >= 0):
5(} 5 print(x[i])
6 6 i-=1

7 7

8 8

9 9

10 10

11 11

In-Class Exercise

Work with your neighbors to define an interface for a game of tic-tac-toe.
What variables do you need? What methods would you make?

