
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

March 20, 2024

Graphs

Learning Objectives

Discuss graph implementation / storage strategies

Define key graph functions and discuss implementation details

Define graph vocabulary

Whats next?
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes

1

2

3

4
5

6

Graphs (for most people)

Graphs (in CS)

5

3

15

2

3

The Internet 2003
The OPTE Project (2003)

Nodes: Routers and
servers

Edges: Connections

https://www.opte.org/the-internet

“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.
3. If you end up back at the circle node, your
number is divisible by 7.

3703

Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016

“Rush Hour” Solution
Unknown Source
Presented by Cinda Heeren, 2016

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

5

3
6

7

2

1

4

G = (V, E)

Vertex:

Edges:

A graph is a data structure containing a set of vertices and a set of edges

Graph Vocabulary

Degree:

Each vertex can have many edges

of edges touching a vertex

What edges are adjacent to 4? To 2?

Adjacency: Two vertices are adjacent if they
are connected by an edge

5

3
6

7

2

1

4

Graph Vocabulary

Path:

A graph has no root and may contain cycles

A sequence of vertices (or edges)
between two nodes

What is a path between 4 and 3?

Terminology Trivia: Every tree is a graph but not every graph is a tree

5

3
6

7

2

1

4

Graph Vocabulary

Cycle:

A graph has no root and may contain cycles

A path from a node back to itself

What are some of the cycles in this graph?

Terminology Trivia: Every tree is a graph but not every graph is a tree

5

3
6

7

2

1

4

Graph Vocabulary

Directed:

A graph may be directed or undirected

Edges are one way connections

v2 is reachable from v1 if there is a
path from v1 to v2

Undirected: Traversable in either direction

Reachability:

What nodes are not reachable from 4?

5

3
6

7

2

1

4

Graph Vocabulary

5

3
6

7

2

1

4

Weights:

A graph may be weighted or unweighted

A value associated with an edge

What is the shortest path from 4 to 5?

1

5

32

1 1

1
9

Graphs
Given a collection of individual DMs between individuals, you want to
build a graph of connections in a social network.

What is a vertex?

What is an edge?

Are the edges directed or undirected?

Are the edges weighted or unweighted?

Graphs
Given a collection of roads between cities in Illinois, you want to build a
graph of the transportation infrastructure in the state.

What is a vertex?

What is an edge?

Are the edges directed or undirected?

Are the edges weighted or unweighted?

Graphs
It is important to be able to describe the structure of a graph given input.

Some other common questions:

Does your graph have cycles?

What is the largest / smallest / average degree in your graph?

What is the total number of edges?

…

Of course, we also have to understand the graph as a data structure

Graph Implementation
What information do we need to store to fully define a graph?

Vertex:

Edge: v

u

w z

What information do we want to be able to find out quickly?

What operations do we want to prioritize?

Graph ADT

Graph ADT

Find: Need to be able to search for vertices, edges, and adjacency.

Insert: Need both a vertex and an edge insertion function

Remove: Need both a vertex and an edge removal function

Constructor

Traversal: Need to be able to traversal a graph efficiently

v

u

w z

Vertex Storage:

Edge Storage:

|V|= n,|E|= mGraph Implementation: Edge List
The equivalent of an ‘unordered’ data structure

|V|= n,|E|= mGraph Implementation: Edge List
The equivalent of an ‘unordered’ data structure

class edgeList:
 def __init__(self, inList=None):
 self.edges=[]
 if inList:
 for e in inList:
 v1, v2 = e.split(" ")
 self.edges.append((v1, v2))

1
2
3
4
5
6
7

v

u

w z

u v
u w
v w

Most graph inputs are line separated lists of edges:

w z

|V|= n,|E|= mGraph Implementation: Edge List
The equivalent of an ‘unordered’ data structure

class edgeList:
 def __init__(self, inList):
 self.edges=[]
 for e in inList:
 v1 = e.split(" “)[___________]

 v2 = e.split(" “)[___________]
 self.edges.append((v1, v2))

1
2
3
4
5
6
7
8

BA,1355,SIN,3316,LHR,507,,0,744 777
BA,1355,SIN,3316,MEL,3339,Y,0,744
TOM,5013,ACE,1055,BFS,465,,0,320

Airline
2-letter (IATA) or 3-letter (ICAO) code of the airline.
Airline ID
Unique OpenFlights identifier for airline (see Airline).
Source airport
3-letter (IATA) or 4-letter (ICAO) code of the source airport.
Source airport ID
Unique OpenFlights identifier for source airport (see Airport)
Destination airport
3-letter (IATA) or 4-letter (ICAO) code of the destination airport.
Destination airport ID
Unique OpenFlights identifier for destination airport (see Airport)
Codeshare
"Y" if this flight is a codeshare (that is, not operated by Airline, but another carrier), empty otherwise.
Stops
Number of stops on this flight ("0" for direct)
Equipment
3-letter codes for plane type(s) generally used on this flight, separated by spaces

https://openflights.org/data.html#airline
https://openflights.org/data.html#airport
https://openflights.org/data.html#airport

Graph Implementation: Edge List

v

u

w z

U V

U W

V W

W Z

getVertices()

getEdges(v)

areAdjacent(u, v)

Graph Implementation: Edge List

v

u

w z

U V

U W

V W

W Z

insertVertex(v)

insertEdge(u, v)

A

Graph Implementation: Edge List

v

u

w z

U V

U W

V W

W Z

insertVertex(v)

insertEdge(u, v)
U

V

W

Z

A

A

Pros:

Cons:

Graph Implementation: Edge List

v

u

w z

U V

U W

V W

W Z

v

u

w z

Vertex Storage:

Edge Storage:

u v w z

u

v

w

z

Graph Implementation: Adjacency Matrix

U

V

W

Z

v

u

w z

getVertices():

Graph Implementation: Adjacency Matrix

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

U 0

V 1

W 2

Z 3

v

u

w z

getEdges(v):

Graph Implementation: Adjacency Matrix

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

U 0

V 1

W 2

Z 3

v

u

w z

areAdjacent(u, v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

v

u

w z

insertVertex(v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

v

u

w z

insertEdge(u, v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

v

u

w z

removeVertex(v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

removeEdge(u, v):

v

u

w z

Pros:

Cons:

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

