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Balanced Binary Search Trees



Reminder: Exam 2 this week!



Reminder: I’m out of town starting tomorrow
Wednesday lecture will be async online.

Friday lab will be run by TAs



Learning Objectives
Review tree runtimes for binary search trees

Introduce the AVL tree

Demonstrate how AVL tree rotations work



BST Analysis – Running Time

BST Worst Case

find O(h)

insert O(h)

delete O(h)

traverse O(n)
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BST Analysis

Every operation on a BST depends on the height of the tree.

… how do we relate  to , the size of our dataset?O(h) n



BST Analysis

What is the max number of nodes in a tree of height  ?h



BST Analysis

What is the min number of nodes in a tree of height  ?h



BST Analysis

A BST of  nodes has a height between:n

Lower-bound: O(log n)

Upper-bound: O(n)
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Correcting bad insert order
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]



AVL-Tree: A self-balancing binary search tree
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Rather than fixing an insertion order, just correct the tree as needed!



Height-Balanced Tree
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What tree is better?

Height balance: b = height(TR) − height(TL)

A tree is “balanced” if: 



BST Rotations (The AVL Tree)

These rotations:

1.

2.

We can adjust the BST structure by performing rotations.



BST Rotations (The AVL Tree)
We can adjust the BST structure by performing rotations.
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Left Rotation
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Left Rotation



Coding AVL Rotations
Two ways of visualizing: 

1) Think of an arrow ‘rotating’ around the center 
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Coding AVL Rotations
Two ways of visualizing: 

2) The rotation will always do the following:
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Make node Y the new root

Make node X the left child of node Y
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Make the subtree B X’s right child.



Coding AVL Rotations
Two ways of visualizing: 

1) Think of an arrow ‘rotating’ around the center 
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Ex: Unbalanced at current (root) node and need to rotateLeft? 

Replace current (root) node with it’s right child. 

Set the right child’s left child to be the current node’s right

Make the current node the right child’s left child



Right Rotation
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Right Rotation
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Right Rotation
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AVL Rotation Practice
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AVL Rotation Practice
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Somethings not quite right…



LeftRight Rotation
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LeftRight Rotation
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RightLeft Rotation
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AVL Rotations
Four kinds of rotations:



AVL Rotations
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Left and right rotation convert sticks into mountains



AVL Rotations
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AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal: 



AVL Rotation Practice
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AVL vs BST ADT
The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?

Find

Insert

Remove



AVL Find
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AVL Insertion _insert(6.5)

Insert (pseudo code): 
1: Insert at proper place 
2: Check for imbalance 
3: Rotate, if necessary
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AVL Insertion _insert(6.5)

Insert (pseudo code): 
1: Insert at proper place 
2: Check for imbalance 
3: Rotate, if necessary
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AVL Insertion _insert(6.5)

Insert (pseudo code): 
1: Insert at proper place 
2: Check for imbalance 
3: Rotate, if necessary
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AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

b=2 

A B



AVL Insertion
If we insert in B, I must have a balance pattern of 2, 1
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AVL Insertion
A left rotation fixes our imbalance in our local tree.
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After rotation, subtree has pre-insert height. (Overall tree is balanced)



AVL Insertion
If we insert in A, I must have a balance pattern of 2, -1
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AVL Insertion
A rightLeft rotation fixes our imbalance in our local tree.
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After rotation, subtree has pre-insert height. (Overall tree is balanced)



AVL Insertion
The other rotations are a direct mirror: 

b=2 

A B

b=-2 

A B



AVL Insertion
If we know our imbalance direction, we can call the correct rotation.

Left Right LeftRightRightLeft



AVL Insertion

A single* rotation restores balance and corrects height!

Insert may increase height by at most:

A rotation reduces the height of the subtree by:

What is the Big O of performing our rotation?

What is the Big O of insert?



AVL Insertion Practice
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AVL Insertion Practice
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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_remove(10)AVL Remove
Remove (pseudo code): 
1: Remove at proper place 
2: Check for imbalance 
3: Rotate, if necessary



AVL Remove
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AVL Removal

We might have to perform a rotation at every level of the tree!

Removal may reduce height by at most:

A rotation always reduces the height of the subtree by:

What is the Big O of performing a single rotation?

What is the Big O of removal?



AVL Tree Analysis

Claim: For a balanced binary search tree _________.

For AVL tree of height h, we know:

find runs in: __________.

insert runs in: __________.

remove runs in: __________.



Whats next?
A non-linear data structure defined recursively as a collection of nodes 
where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes
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