Algorithms and Data Structures for Data Science Balanced Binary Search Trees

CS 277
March 18, 2024
Brad Solomon

UNIVERSITY OF
ILLINOIS
URBANA-CHAMPAIGN
Department of Computer Science

Reminder: Exam 2 this week!

Reminder: I'm out of town starting tomorrow

Wednesday lecture will be async online.

Friday lab will be run by TAs

Learning Objectives

Review tree runtimes for binary search trees

Introduce the AVL tree - balance

Demonstrate how AVL tree rotations work

BST Analysis - Running Time

$$
\begin{aligned}
& \text { wast case } \\
& \text { heisht: n }
\end{aligned}
$$

BST Analysis

Every operation on a BST depends on the height of the tree.
... how do we relate $O(h)$ to n, the size of our dataset?

$$
f(h) \leq n \subseteq g(h)
$$

BST Analysis
Draw sone
binary example:
What is the max number of nodes in a tree of height h ?
$h=0$
\bigcirc

$$
2^{0}+2^{\prime}+2^{2}+2^{3} \ldots+2^{2}
$$

$h=1$

$$
h=2
$$

$\log n 2 h+1$
shin height

$$
h \approx O(\log n)
$$

BST Analysis
What is the min number of nodes in a tree of height h ?

$h=0$	0	min is
$h=1$	0_{1}	
	0	
$h=2$	0_{1}	
	0	

BST Analysis

A BST of n nodes has a height between:
Lower-bound: $O(\log n)$

$$
h=o(\cos n)
$$

Upper-bound: $O(n)$

Correcting bad insert order

The height of a BST depends on the order in which the data was inserted Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!

Height-Balanced Tree
What tree is better?

$$
4^{2}-(-1)=2
$$

Height balance: $b=\operatorname{height}\left(T_{R}\right)-\operatorname{height}\left(T_{L}\right)$
A tree is"balanced"if: for all nodes, \mid balance $\mid \leq 1$

BST Rotations (The AVL Tree)
We can adjust the BST structure by performing rotations.
These rotations:

1. Modify the order of nodes and keep $\frac{\text { BEt property }}{\text { Y left is sumer }}$ Yrisht is
2. Reduce tree height by one

BST Rotations (The AVL Tree)
We can adjust the BST structure by performing rotations. l) Balance for every node
height

None: -1
$0: 0$

Left Rotation

Left Rotation

Coding AVL Rotations

Two ways of visualizing:

1) Think of an arrow 'rotating' around the center

Coding AVL Rotations

Two ways of visualizing:
2) The rotation will always do the following:

Make node \mathbf{Y} the new root

Make the subtree B X's right child.

Make node \mathbf{X} the left child of node \mathbf{Y}

Coding AVL Rotations

Two ways of visualizing:

1) Think of an arrow 'rotating' around the center
2) Recognize that there's a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft?
Replace current (root) node with it's right child.
Set the right child's left child to be the current node's right
Make the current node the right child's left child

Right Rotation

Right Rotation

Right Rotation

RightRotation @ 38

AVL Rotation Practice

AVL Rotation Practice

Somethings not quite right...

LeftRight Rotation

Left

LeftRight Rotation

RightLeft Rotation

(8)

AVL Rotations
Four kinds of rotations:

Left

R.'sht

ceft 0 .'sht

risht Left

AVL Rotations

Left and right rotation convert sticks into mountains

AVL Rotations

LeftRight (RightLeft) convert elbows into sticks into mountains

AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)
2. The running time of rotations are constant
3. The rotations maintain BST property

Goal:

AVL Rotation Practice

AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates when necessary
How does the constraint on balance affect the core functions?
Find

Insert

Remove

AVL Find

AVL Insertion
Given AVL tree _inser t(6.5) Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary

$$
\int_{-b=0}^{-1}-b=2
$$

\rightarrow was balanced!

AVL Insertion
Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary

AVL Insertion
Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary

AVL Insertion - what istation to call for what ins.it

Given an AVL is balanced, insert can insert at most one imbalance

AVL Insertion
If we insert in B, I must have a balance pattern of $\mathbf{2 , 1}$
conceptual point: (t) \#ts are right heavy

Resht heavy in rishi divertia Ls Left rotation

AVL Insertion

A left rotation fixes our imbalance in our local tree.

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion

If we insert in A, I must have a balance pattern of $\mathbf{2 , - 1}$

$$
2,=1 \rightarrow \text { right Left }
$$

AVL Insertion

A rightLeft rotation fixes our imbalance in our local tree.

0

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion

The other rotations are a direct mirror:

left

R.'sht

AVL Insertion
(t) is cosh
If we know our imbalance direction, we can call the correct rotation.

AVL Insertion

Insert may increase height by at most:
A rotation reduces the height of the subtree by:
A single* rotation restores balance and corrects height!
What is the Big O of performing our rotation?

What is the Big O of insert? O(los n)

AVL Insertion Practice

AVL Insertion Practice
_insert(14)

AVL Remove

AVL Remove

AVL Remove

$$
1-3=-2
$$

AVL Remove

AVL Remove

AVL Remove

AVL Removal

Removal may reduce height by at most:
A rotation always reduces the height of the subtree by:

We might have to perform a rotation at every level of the tree!
What is the Big O of performing a single rotation?

$$
\Leftrightarrow O(1)
$$

What is the Big O of removal?

$$
\Leftrightarrow O(\log 1)
$$

AVL Tree Analysis

$$
h=O(\log n)
$$

For AVL tree of height h , we know:
find runs in: \qquad $O(\log n)$ insert runs in: \qquad $O(\log n)$. 2 rotation +2 insert remove runs in: \qquad $O(\log n)$. h rotations +1 remove $O(\log n) \quad O(\log n)$
Claim: For a balanced binary search tree $h=\log (n)$.

Whats next? Tlees \rightarrow Gluph

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.

$$
g \mid 4 p L
$$

(In CS 277) a tree is also:
CyClos

1) Acyclic - contains no cyeles
2) Rosted - root node conmected to ailin nodes

