Algorithms and Data Structures for Data Science Balanced Binary Search Trees CS 277 March 18, 2024

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Brad Solomon

Department of Computer Science

Reminder: Exam 2 this week!

Reminder: I'm out of town starting tomorrow

Wednesday lecture will be async online.

Friday lab will be run by TAs

MP S 177

Learning Objectives

Review tree runtimes for binary search trees

BST Analysis

Every operation on a BST depends on the **height** of the tree.

... how do we relate O(h) to n, the size of our dataset?

 $f(n) \leq h \leq g(n)$

 $f(h) \leq n \leq g(h)$

BST Analysis Día Sene Exemplos binary What is the max number of nodes in a tree of height h? 2+1+1+1 -- +2 トン - 2 - 1 Max Mader h = 1 1) LUS といて log n nhtl 2 h.n $h \approx O(\log n)$

BST Analysis

What is the min number of nodes in a tree of height h?

h=0 h=1 Min is ht h : 2 %

A BST of *n* nodes has a height between:

Lower-bound: $O(\log n)$ $h = O(\log n)$

Upper-bound: *O*(*n*)

5

1

6

Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!

EL BY B BY

Left Rotation

Coding AVL Rotations

Two ways of visualizing:

1) Think of an arrow 'rotating' around the center

Coding AVL Rotations

Two ways of visualizing:

2) The rotation will always do the following:

Make node Y the new root

Make the subtree **B** X's right child.

Make node **X** the left child of node **Y**

Coding AVL Rotations

Two ways of visualizing:

1) Think of an arrow 'rotating' around the center

2) Recognize that there's a concrete order for rearrangements

51

В

Α

84

89

D

Ex: Unbalanced at current (root) node and need to *rotateLeft*?

Replace current (root) node with it's right child.

Set the right child's left child to be the current node's right

Make the current node the right child's left child

AVL Rotation Practice

Somethings not quite right...

LeftRight Rotation

RightLeft Rotation

Four kinds of rotations:

Left and right rotation convert **sticks** into **mountains**

LeftRight (RightLeft) convert elbows into sticks into mountains

Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal: We vant a height bounded BST

AVL Rotation Practice

AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?

Insert Remove

Find

AVL Find

AVL Insertion Insert (pseudo code): 1: Insert at proper place 2: Check for imbalance 3: Rotate, if necessary

_insert(6.5)

AVL Insertion - what istation to call for what insert

Given an AVL is balanced, insert can insert **at most** one imbalance

If we insert in B, I must have a balance pattern of 2, 1

A **left** rotation fixes our imbalance in our local tree.

After rotation, subtree has **pre-insert height**. (Overall tree is balanced)

If we insert in A, I must have a balance pattern of 2, -1

2 = > risht left

A **rightLeft** rotation fixes our imbalance in our local tree.

After rotation, subtree has **pre-insert height**. (Overall tree is balanced)

The other rotations are a direct mirror:

left

AVL Insertion $(\rightarrow) \tilde{1} \leq (\sqrt[4]{3})^{\dagger}$

If we know our imbalance direction, we can call the correct rotation.

Insert *may* increase height by at most:

A rotation reduces the height of the subtree by:

A single* rotation restores balance and corrects height! What is the Big O of performing our rotation?

What is the Big O of insert?

AVL Insertion Practice

AVL Insertion Practice

Whats next? $t_{1075} \rightarrow 0^{-14}$

(Y(|x))

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes

