
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

March 6, 2024

Binary Search Tree

Reminder: mp_automata due Friday

93% credit late day extension through Saturday

Additional extensions by request

Reminder: Spring Break next week

Lab on Friday will still happen, will be due after spring break

No office hours during spring break

Exam 2: 3/19 - 3/21

Yes its right after spring break. Sorry!

Covered material described on website

One coding question — likely similar to mp_automata

Practice exam (hopefully) later this week

Learning Objectives

Finish implementation of BST ADT

Introduce the Huffman Tree

Practice recursion in the context of trees

class bstNode:
 def __init__(self, key, val, left=None, right=None):
 self.key = key
 self.val = val
 self.left = left
 self.right = right

Binary Search Tree
1
2
3
4
5
6

1

63

5

4 7

5 3 6 7 1 4
A B C D E F

Key

Value

∀n ∈ TL, n . val < T . val

∀n ∈ TR, n . val > T . val

A BST is a binary tree such that:T = treeNode(val, TL, Tr)

Binary Search Tree ADT — what changed?

Insert: Find the correct insert location based on BST structure

Remove: Find the node being removed and… ???

Traverse: Visit every node in tree (all objects)

Search: Find a specific node in the tree using the ‘key’ value

Constructor: Build a new (empty) tree

BST Remove

13

10 25

12 37

38

51

40 84

8966

95

remove(40)

BST Remove

13

10 25

12 37

38

51

40 84

8966

95

remove(25)

BST Remove

13

10 25

12 37

38

51

40 84

8966

95

remove(13)

BST Remove

1

63

5

4 7

def remove(self, key):
 self.root = self.remove_helper(self.root, key)

def remove_helper(self, node, key):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

BST Remove

What will the tree structure look like if we remove node 16 using IOS?

6

5

3

8

11

9 16

1814

21
121

BST Analysis – Running Time

Operation
BST Worst Case

find

insert

delete

traverse

Limiting the height of a tree

95

7

7

9

61

5

1

6

Height-Balanced Tree

95

7

7

5

9

What tree is better?

How would you describe this mathematically?

Height-Balanced Tree

95

7

7

5

9

What tree is better?

Height balance: b = height(TR) − height(TL)

A tree is “balanced” if:

Option A: Correcting bad insert order
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

84

51 89

A B C D

13

10 25

38

51

84

89

A

B

C D

Rather than fixing an insertion order, just correct the tree as needed!

We will return to this topic… after spring break!

Optimal Storage Costs
Achieving an optimal storage cost for a dataset is often important

Let's use strings as an accessible example!

What is the minimum bits needed to encode the message:

‘feed me more food’Char Binary
f 000
e 001
d 010
m 100
r 011
o 101

 ‘ ‘ 110

Optimal Storage Costs

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Using three bits per character, we have 51 bits total. But can we do better?

‘feed me more food’

If we think about our input as a sorted list of frequencies, yes!

Using binary trees for string encoding

B

A

C D

class treeNode:
 def __init__(self, key, val, left=None, right=None):
 self.key = key
 self.val = val
 self.left = left
 self.right = right

7 5 2 4
Key

Value

A B C D

Lets define a tree with the following:

The values are the frequencies of those characters

The keys are individual characters

Binary Tree encoding

B

A

C D

Given the following two trees, how might we define an encoding?

A B C D

Binary Tree encoding

B

A

C D

How did we produce this encoding?

Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

B

A

C D

Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

Going left = 0

Going right = 1

Binary Tree encoding
The path from root to leaf defines our encoding, but which tree is best?

B

A

C D

Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

Binary Tree encoding
If my frequencies are {A : 7 | B : 5 | C : 2 | D : 4 }, which tree was better?

Building the Huffman Tree
The Huffman Tree is the tree with the optimal total path length for a
given set of characters and their frequencies.

Step 1: Calculate the frequency of every character in text and
order by increasing frequency. Store in a queue (a sorted list).

Input: ’feed me more food’

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Building the Huffman Tree
Step 2: Build a tree from the bottom up. Start by taking the two
least frequent characters and merge them (create a parent node).
Store the merged characters in a new queue.

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4
Input:

Building the Huffman Tree
Step 2: Build a tree from the bottom up. Start by taking the two
least frequent characters and merge them (create a parent node).
Store the merged characters in a new queue.

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4
Input:

Output:

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items from either list.
Be sure to remove and return the minimum item as seen below:

Input:

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items from either list.
Be sure to remove and return the minimum item as seen below:

Input:

Output:

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items. Note that by
inserting in the back the merged items will always remain sorted!

Input:

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4

Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items. Note that by
inserting in the back the merged items will always remain sorted!

Input:

Output:

Single: e : 4

Merged: rd : 3 | fm : 4 | o’SPACE’ : 6

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4

Building the Huffman Tree
Step 3: Once the ‘single’ character list has been exhausted, we can easily
merge the rest of our list by taking the front two values in merged.

Input:

Output:

Single:

Merged: fm : 4 | o’SPACE’ : 6 | rde : 7

Single: e : 4

Merged: rd : 3 | fm : 4 | o’SPACE’ : 6

Building the Huffman Tree
Step 3: Once the ‘single’ character list has been exhausted, we can
easily merge the rest of our list by taking the front two values in
merged.
Input:

Output:

Single:

Merged: rde : 7 | fmo’SPACE’ : 10

Single:

Merged: fm : 4 | o’SPACE’ : 6 | rde : 7

Building the Huffman Tree
Step 4: Stop when there is only a single item in either queue. This is
our complete binary tree!

Input:

Output:

Single:

Merged: rdefmo’SPACE’ : 17

Single:

Merged: rde : 7 | fmo’SPACE’ : 10

Encoding using the Huffman Tree
The path through the tree defines each individual character’s encoding!

Char Binary

f

e

d

m

r

o

 ‘ ‘

Encoding using the Huffman Tree
The path through the tree defines each individual character’s encoding!

Char Binary

f 100

e 01

d 001

m 101

r 000

o 110

 ‘ ‘ 111

Decoding using the Huffman Tree
We can decode by walking through the tree using 0s and 1s as instructions!

Input: 100010100111110101

Output:

