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Binary Search Tree



Reminder: mp_automata due Friday

93% credit late day extension through Saturday

Additional extensions by request



Reminder: Spring Break next week

Lab on Friday will still happen, will be due after spring break

No office hours during spring break



Exam 2: 3/19 - 3/21

Yes its right after spring break. Sorry!

Covered material described on website

One coding question — likely similar to mp_automata

Practice exam (hopefully) later this week



Learning Objectives

Finish implementation of BST ADT

Introduce the Huffman Tree

Practice recursion in the context of trees



class bstNode: 
    def __init__(self, key, val, left=None, right=None): 
        self.key = key 
        self.val = val 
        self.left = left 
        self.right = right 
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∀n ∈ TL,  n . val < T . val

∀n ∈ TR,  n . val > T . val

A BST is a binary tree  such that:T = treeNode(val, TL, Tr)



Binary Search Tree ADT — what changed?

Insert: Find the correct insert location based on BST structure

Remove: Find the node being removed and… ???

Traverse: Visit every node in tree (all objects)

Search: Find a specific node in the tree using the ‘key’ value

Constructor: Build a new (empty) tree



BST Remove
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BST Remove
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BST Remove
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BST Remove
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def remove(self, key): 
    self.root = self.remove_helper(self.root, key) 

def remove_helper(self, node, key): 
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BST Remove

What will the tree structure look like if we remove node 16 using IOS?
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BST Analysis – Running Time

Operation
BST Worst Case

find

insert

delete

traverse



Limiting the height of a tree
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Height-Balanced Tree
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What tree is better?

How would you describe this mathematically?



Height-Balanced Tree
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What tree is better?

Height balance: b = height(TR) − height(TL)

A tree is “balanced” if: 



Option A: Correcting bad insert order
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]



AVL-Tree: A self-balancing binary search tree
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Rather than fixing an insertion order, just correct the tree as needed!



We will return to this topic… after spring break!



Optimal Storage Costs
Achieving an optimal storage cost for a dataset is often important

Let's use strings as an accessible example!

What is the minimum bits needed to encode the message:

‘feed me more food’Char Binary
f 000
e 001
d 010
m 100
r 011
o 101

 ‘  ‘ 110



Optimal Storage Costs

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Using three bits per character, we have 51 bits total. But can we do better?

‘feed me more food’

If we think about our input as a sorted list of frequencies, yes!



Using binary trees for string encoding
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class treeNode: 
    def __init__(self, key, val, left=None, right=None): 
        self.key = key 
        self.val = val 
        self.left = left 
        self.right = right 
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Lets define a tree with the following:

The values are the frequencies of those characters

The keys are individual characters



Binary Tree encoding
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Given the following two trees, how might we define an encoding?

A B C D



Binary Tree encoding
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How did we produce this encoding?

Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11
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Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

Going left = 0

Going right = 1

Binary Tree encoding
The path from root to leaf defines our encoding, but which tree is best?
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Char Binary
A 1
B 00
C 010
D 011

A B C D

Char Binary
A 00
B 01
C 10
D 11

Binary Tree encoding
If my frequencies are {A : 7 | B : 5 | C : 2 | D : 4 }, which tree was better?



Building the Huffman Tree
The Huffman Tree is the tree with the optimal total path length for a 
given set of characters and their frequencies.

Step 1: Calculate the frequency of every character in text and 
order by increasing frequency. Store in a queue (a sorted list).

Input: ’feed me more food’

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4



Building the Huffman Tree
Step 2: Build a tree from the bottom up. Start by taking the two 
least frequent characters and merge them (create a parent node). 
Store the merged characters in a new queue.

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4
Input: 



Building the Huffman Tree
Step 2: Build a tree from the bottom up. Start by taking the two 
least frequent characters and merge them (create a parent node). 
Store the merged characters in a new queue.

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4
Input: 

Output: 

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3



Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items from either list. 
Be sure to remove and return the minimum item as seen below:

Input: 

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3



Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items from either list. 
Be sure to remove and return the minimum item as seen below:

Input: 

Output: 

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4

Single: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3



Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items. Note that by 
inserting in the back the merged items will always remain sorted!

Input: 

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4



Building the Huffman Tree
Step 3: Repeatedly merge the minimum two items. Note that by 
inserting in the back the merged items will always remain sorted!

Input: 

Output: 

Single: e : 4

Merged: rd : 3 | fm : 4 | o’SPACE’ : 6

Single: o : 3 | 'SPACE' : 3 | e : 4

Merged: rd : 3 | fm : 4



Building the Huffman Tree
Step 3: Once the ‘single’ character list has been exhausted, we can easily 
merge the rest of our list by taking the front two values in merged.

Input: 

Output: 

Single:

Merged: fm : 4 | o’SPACE’ : 6 | rde : 7

Single: e : 4

Merged: rd : 3 | fm : 4 | o’SPACE’ : 6



Building the Huffman Tree
Step 3: Once the ‘single’ character list has been exhausted, we can 
easily merge the rest of our list by taking the front two values in 
merged.
Input: 

Output: 

Single:

Merged: rde : 7 | fmo’SPACE’  : 10

Single:

Merged: fm : 4 | o’SPACE’ : 6 | rde : 7



Building the Huffman Tree
Step 4: Stop when there is only a single item in either queue. This is 
our complete binary tree!

Input: 

Output: 

Single:

Merged: rdefmo’SPACE’  : 17

Single:

Merged: rde : 7 | fmo’SPACE’  : 10



Encoding using the Huffman Tree
The path through the tree defines each individual character’s encoding!

Char Binary
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Encoding using the Huffman Tree
The path through the tree defines each individual character’s encoding!

Char Binary

f 100

e 01

d 001

m 101

r 000

o 110

 ‘  ‘ 111



Decoding using the Huffman Tree
We can decode by walking through the tree using 0s and 1s as instructions!

Input:  100010100111110101

Output:


