Algorithms and Data Structures for Data Science

Binary Search Tree 2

CS 277 March 6, 2024
Brad Solomon /\

iLLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Reminder: mp_automata due Friday

93% credit late day extension through Saturday

Additional extensions by request

Reminder: Spring Break next week

Lab on Friday will still happen, will be due after spring break

No office hours during spring break

Exam 2:3/19-3/21

../—

Yes its right after spring brea '

—

Covered material described on website
T N — —

One coding question — likely similar to mp_automata

——

Pu—

Practice exam (hopefully) later this week d)

Learning Objectives ()
% @M‘Nb
Finish implementation of BST ADT

)

Practice recursion in the context of trees

Introduce the Huffman Tree

N _—

class bstNode:
def init (self, key, val, left=None, right=None):

self.key = key ‘:] 3P
self.val = val
self.left = left
self.right = right

Binary Search Tree

oo b WMNDR

Ae
el
A BST is a binary tree T = treeNode(val, T;, T,) such that:

L" f‘&. 'S S aaller

Qicht s Tavser (3 O

Vne T, n.val <T.val

Vne Ty, n.val > T.val

OO
3 7
B[c|[p

mwes| (3

Key [5 6 1
Value | A C E

Binary Search Tree ADT — what changed? @

Constructor: Build a new (empty) tree

Insert: Find the correct insert location based on BST structure KO&

Remove: Find the node being removed and... 777 J‘:(';"?‘-\"s et e
K !

Traverse: Visit every node in tree (all objects)

¢ JDP«W‘/ J>/c
<raxr R
)) Nroctore

Search: Find a specific node in the tree using the 'key’value

_/(\

BST Remove remove (40)

a bl e

')?‘w\ Agde to e [Cporyo) @ @

Ma\« (=)
NOBONNCOO

)561’ ’,Nn,\ W\ =

F‘W @ 2 (/\’IA dv (Pc,./(S,,,
ey sl () () (%) (m)
© (ewe 10
2 (@
Cctoln ffone
(\OAL. le £t :(g-(mdve@ "I()> @
/\O&ZTQL,IP{‘ = v

BST Remove remove (25)
| W\ cag

Loplte) L,‘g“
0 hi\d
Set Pagd, W]} = p. (h¥-¢

[¢ @ 2 @
D Neane @ 13
C\Li(mwe@ai'

letvin (23, (gt

node right = (Pmovel 2%

BST Remove remove (13)

P UNENY (Ase Tot 1o >§>s 3> ...
‘) ~ r<\ ‘X. OJ
\> ‘F"‘a NQXQ ¥P'I‘3 VPMMA I?rec\:(pss @ Sallrssar

TOY o QS

N S /
> 07\:?1;:/*@’\' 67’1 (s
& swap Ry, valug Q e

BST Remove

; aet Z:Tg‘.’i;zilils];:ig). ;emove_helper(self .root, key)

2 def remove helper (self, node, key):

5 ~

: \> F/\A NA}C rh Next lovsrst

8 S/ .;l:l.’ @}.

; ‘ T,-OP } iOS /;

o) 2) Fund = v

12

203) Swap Velwes Q

15 AU

16

5) Rewoe (e ® % S Recrse ¢y ante

20 0 or ﬁ. Wl Cace @ @ L Recuise left ey 0
21

22 7% Q/W\’P/Gc\ L?fke Iag'\- N\on 'Ab/\? Ve ,V(
23 \

25 - ‘s the [05

BST Remove

What will the tree structure look like if we remove node 16 usmg |0S?

\)\/\,M o tos (o) — 19 o

O o 6@@’

ol <ol
e AR @ %
o OIS

BST Analysis — Running Time @

BST Worst Case

find (/\\ o .O\
‘ &
insert {/)) O < ,/\) '?hﬁ h Q)\Q
-
[ﬁmM m) - hr,‘jhf;\,ﬂ O\a

> /y(y é,,fng)r (< SC

traverse

Limiting the height of a tree

Height-Balanced Tree

What tree is better? @
O O

© € @\@

How would you describe this mathematically?

Height-Balanced Tree @ he-dht =0)
(a,),fslwﬁ b:ﬂ_‘_"

What tree is better? [/

Height balance: b = height(Ty) — height(T;)

e

@alanced”if: G\ Nodes)’lﬂVﬁ \7 - 9\

Option A: Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order: [1,3,2,4,5,6, 7] @

Insert Order: [i 2,3,6,7,1,5] LZ = @
g, °
0% &

AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!
/ -

C_,7 .Méo/‘\’ D (enan®

We will return to this topic... after spring break!
e — T

Optimal Storage Costs

Achieving an optimal storage cost for a dataset is often important

Let's use strings as an accessible example!

What is the minimum bits needed to encode the message:

Char Binary ‘feed me more food’ }é -
—~ f 000 ‘
- e 001 -
— d 010 15 kf
- m 100 ot — < TS

@ qTs —

— 011 7/ fr
- 0 101

- 10 <eth char

Optimal Storage Costs

Using three bits per character, we haveﬁ bits total. But can we do better?

‘feed me more food’

If we think about our input as a sorted list of frequencies, yes!

£ of =l
r:1|d:2|f:2|m:2|0:3|'SPACE':3|e:4 éj Cownt
A Ci’l&/a(*"f‘
/\\ o w Bl)
Mcye |“U‘§ ros’\“
\ow Qe% }\:‘7"‘ €((OV

2 5

Using binary trees for string encoding

Lets define a tree with the following:
The keys are individual characters

The values are the frequencies of those characters

class treeNode:
def init (self, key, val, left=None, right=None):
self.key = key
self.val = val
self.left = left
self.right = right

ac\'J
KeyABCDC/"C‘LC"‘ @
Value| 71512 1| 4 C”'Pfe@w\(\ \ 2
/ l /(I AASNZA S /l's\i chear s

Binary Tree encoding

Given the following two trees, how might we define an encoding?

Binary Tree encoding

How did we produce this encoding?

Char Binary

A 1

B 00
C 010
D 011

Binary Tree encoding
The path from root to leaf defines our encoding, but which tree is best?

Going left=0
Going right =1 ‘

(&) (&) G O
) PR - -

A 00

B 00

t B 01
C 010 V" @) ree C 10
D

D 011 (oflect 11

Binary Tree encoding @

If my frequenciesare{A:7|B:5|C:2|D:4}, which tree was better?
Buw W a Hree baset <n & €Y vtnte 4

)
2L z¢ (o 9

Qligmu" D ©® © ©

Char Binary

Char Binary

A 1 741 /7 " o~
3 o0 % >[5 | B 01
c o %7 t | o .
D o011 Y%= & I & -

Building the Huffman Tree

The Huffman Tree is the tree with the optimal total path length for a
given set of characters and their frequencies.

Step 1: Calculate the frequency of every character in text and
order by increasing frequency. Store in a queue (a sorted list).

~__

Input: ’'feed me more food’
r:1]|d:2|f:2|m:2|0:3|'SPACE':3|e: 4

1 R}

U/\\\/ (Cwont Swma\legt only ‘35‘}‘ o ger

Building the Huffman Tree

Step 2: Build a tree from th =w tart by taking the two
least frequent characters and merge them (create a parent node).

Store the merged characters in a new queue. ()
{-SMHPS
Input: (s Te b @ Guvug
7
@@éﬁ:ﬂm:2|o:3|'SPACE':3|e:4 Resors T gobins
Muse
|> (Oncattnatt STenTs fehara s ro. 3
[“G 0\— — ('C\

9~> Sum Are froguin s

Building the Huffman Tree

Step 2: Build a tree from the bottom up. Start by taking the two
least frequent characters and merge them (create a parent node).
Store the merged characters in a new queue.

Input:
r:1|d:2|f:2|m:2|o0:3|'SPACE':3|e: 4 @
Output: ° o\

Single:f:2|m:2|0:3|'SPACE':3|e:4 o 0

Merged: rd : 3
A

Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items from either list.
Be sure to remove and return the minimum item as seen below:
Single:f:2|m:2|0:3|'SPACE':3|e:4
—_— S
Merged:rd:3 {24
/ & M erse o.\ways add o onc
| sk
oA

el 204
= et @) @D

Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items from either list.
Be sure to remove and return the minimum item as seen below:

Input:
Single:f:2|m:2|0:3|'SPACE':3|e:4

Merged:rd : 3
ORC

Output:
Single:0:3|'SPACE':3|e:4

Merged:rd:3|fm:4

Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items. Note that by
inserting in the back the merged items will always remain sorted!

Input:
Single:0:3|'SPACE':3|e:4

Merged:rd:3|fm: 4

Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items. Note that by
inserting in the back the merged items will always remain sorted!

Input:
Single:0:3|'SPACE':3|e:4
Merged:rd:3|fm: 4

Output:

@ @ o+SPACE:6

Single: e :4

Building the Huffman Tree

Step 3: Once the'single’ character list has been exhausted, we can easily
merge the rest of our list by taking the front two values in merged.

Input:

Single: e :4

Merged:rd:3|fm:4 | o'SPACE": 6
Output:

Single:

Merged: fm :4 | o'SPACE": 6 | rde : 7

Building the Huffman Tree

Step 3: Once the'single’ character list has been exhausted, we can easily
merge the rest of our list by taking the front two values in merged.

Input:
Single:
o'SPACE’: 6 | rde: 7

Merged:fm : 4
Output:

Single:

Merged: rde: 7 | fmo'SPACE’ : 10

Building the Huffman Tree @

Step 4: Stop when there is only a single item in either queue. This is
our complete binary tree!

Input:

Single:

Merged: rde : 7 | fmo’SPACE’ : 10 @
Output: O @ @
Single:

Merged: rdefmo’SPACE’ : 17

Encoding using the Huffman Tree

The path through the tree defines each individual character’s encoding!

Char Binary

f rdefmo+SPACE:17
e
@ fmo+SPACE: 10
. © @ @

o O@@@@@

Encoding using the Huffman Tree

The path through the tree defines each individual character’s encoding!

Char Binary

f 100

7 @

d 001

m o101 © @ @
r 000

o 110 000@@@

111

Decoding using the Huffman Tree @

We can decode by walking through the tree using Os and 1s as instructions!

Input: 100010100111110101

Output: @
() @ @

