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Reminder: mp_automata due Friday

93% credit late day extension through Saturday

Additional extensions by request




Reminder: Spring Break next week

Lab on Friday will still happen, will be due after spring break

No office hours during spring break




Exam 2:3/19-3/21
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Yes its right after spring brea '
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Covered material described on website
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One coding question — likely similar to mp_automata
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Practice exam (hopefully) later this week d)




Learning Objectives ()
% @M‘Nb
Finish implementation of BST ADT

)

Practice recursion in the context of trees

Introduce the Huffman Tree
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class bstNode:
def init (self, key, val, left=None, right=None):

self.key = key ‘:] 3P
self.val = val
self.left = left
self.right = right

Binary Search Tree
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Binary Search Tree ADT — what changed? @

Constructor: Build a new (empty) tree

Insert: Find the correct insert location based on BST structure KO&

Remove: Find the node being removed and... 777 J‘:( ';"?‘-\"s et e
K !

Traverse: Visit every node in tree (all objects)
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Search: Find a specific node in the tree using the 'key’value
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BST Remove remove (40)

a bl e

')?‘w\ Agde to e [ Cporyo ) @ @

Ma\« (=)
NOBONNCOO

)561’ ’,Nn,\ W\ =

F‘W @ 2 (/\’IA dv (Pc,./(S,,,
ey sl () () (%) (m)
© (ewe 10
2 ( @
Cctoln ffone
(\OAL. le £t :(g-(mdve@ "I()> @
/\O&ZTQL,IP{‘ = v



BST Remove remove (25)
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BST Remove remove (13)
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BST Remove

; aet Z:Tg‘.’i;zilils];:ig). ;emove_helper(self .root, key)

2 def remove helper (self, node, key):
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BST Remove

What will the tree structure look like if we remove node 16 usmg |0S?
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BST Analysis — Running Time @

BST Worst Case
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Limiting the height of a tree




Height-Balanced Tree

What tree is better? @
O O
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How would you describe this mathematically?




Height-Balanced Tree @ he-dht =0 )
(a,),fslwﬁ b:ﬂ_‘_"

What tree is better? [/

Height balance: b = height(Ty) — height(T;)
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Option A: Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order: [1,3,2,4,5,6, 7] @

Insert Order: [i 2,3,6,7,1,5] LZ = @
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AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!
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We will return to this topic... after spring break!
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Optimal Storage Costs

Achieving an optimal storage cost for a dataset is often important

Let's use strings as an accessible example!

What is the minimum bits needed to encode the message:

Char  Binary ‘feed me more food’ }é -
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Optimal Storage Costs

Using three bits per character, we haveﬁ bits total. But can we do better?

‘feed me more food’

If we think about our input as a sorted list of frequencies, yes!
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Using binary trees for string encoding

Lets define a tree with the following:
The keys are individual characters

The values are the frequencies of those characters

class treeNode:
def init (self, key, val, left=None, right=None):
self.key = key
self.val = val
self.left = left
self.right = right
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Binary Tree encoding

Given the following two trees, how might we define an encoding?




Binary Tree encoding

How did we produce this encoding?

Char Binary

A 1

B 00
C 010
D 011




Binary Tree encoding
The path from root to leaf defines our encoding, but which tree is best?

Going left=0
Going right =1 ‘
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Binary Tree encoding @

If my frequenciesare{A:7|B:5|C:2|D:4}, which tree was better?
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Building the Huffman Tree

The Huffman Tree is the tree with the optimal total path length for a
given set of characters and their frequencies.

Step 1: Calculate the frequency of every character in text and
order by increasing frequency. Store in a queue (a sorted list).
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Input: ’'feed me more food’
r:1]|d:2|f:2|m:2|0:3|'SPACE':3|e: 4
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Building the Huffman Tree

Step 2: Build a tree from th =w tart by taking the two
least frequent characters and merge them (create a parent node).

Store the merged characters in a new queue. ()
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Building the Huffman Tree

Step 2: Build a tree from the bottom up. Start by taking the two
least frequent characters and merge them (create a parent node).
Store the merged characters in a new queue.

Input:
r:1|d:2|f:2|m:2|o0:3|'SPACE':3|e: 4 @
Output: ° o\

Single:f:2|m:2|0:3|'SPACE':3|e:4 o 0

Merged: rd : 3
A



Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items from either list.
Be sure to remove and return the minimum item as seen below:
Single:f:2|m:2|0:3|'SPACE':3|e:4
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Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items from either list.
Be sure to remove and return the minimum item as seen below:

Input:
Single:f:2|m:2|0:3|'SPACE':3|e:4

Merged:rd : 3
ORC

Output:
Single:0:3|'SPACE':3|e:4

Merged:rd:3|fm:4



Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items. Note that by
inserting in the back the merged items will always remain sorted!

Input:
Single:0:3|'SPACE':3|e:4

Merged:rd:3|fm: 4




Building the Huffman Tree

Step 3: Repeatedly merge the minimum two items. Note that by
inserting in the back the merged items will always remain sorted!

Input:
Single:0:3|'SPACE':3|e:4
Merged:rd:3|fm: 4

Output:

@ @ o+SPACE:6

Single: e :4




Building the Huffman Tree

Step 3: Once the'single’ character list has been exhausted, we can easily
merge the rest of our list by taking the front two values in merged.

Input:

Single: e :4

Merged:rd:3|fm:4 | o'SPACE": 6
Output:

Single:

Merged: fm :4 | o'SPACE": 6 | rde : 7




Building the Huffman Tree

Step 3: Once the'single’ character list has been exhausted, we can easily
merge the rest of our list by taking the front two values in merged.

Input:
Single:
o'SPACE’: 6 | rde: 7

Merged:fm : 4
Output:

Single:

Merged: rde: 7 | fmo'SPACE’ : 10




Building the Huffman Tree @

Step 4: Stop when there is only a single item in either queue. This is
our complete binary tree!

Input:

Single:

Merged: rde : 7 | fmo’SPACE’ : 10 @
Output: O @ @
Single:

Merged: rdefmo’SPACE’ : 17




Encoding using the Huffman Tree

The path through the tree defines each individual character’s encoding!

Char Binary
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Encoding using the Huffman Tree

The path through the tree defines each individual character’s encoding!

Char Binary

f 100

7 @

d 001

m o101 © @ @
r 000

o 110 000@@@

111




Decoding using the Huffman Tree @

We can decode by walking through the tree using Os and 1s as instructions!

Input: 100010100111110101

Output: @
() @ @




