Algorithms and Data Structures for Data Science

Binary Search Tree

CS 277
Brad Solomon

March 4, 2024

Department of Computer Science
Learning Objectives

Review understanding of Binary Trees

Introduce the dictionary ADT

Extend ADT to Binary Search Trees

Practice recursion in the context of trees
Binary Tree Recursion

A **binary tree** is a tree T such that:

$T = \text{None}$

or

$T = \text{treeNode}(\text{val}, T_L, T_R)$

```python
class treeNode:
    def __init__(self, val, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

class binaryTree:
    def __init__(self):
        self.root = None
```
Tree ADT

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree
Binary Tree Traversal

Last class we implemented traversals using recursion, stacks, and queues.

What implementations led to a **depth first search traversal**?

Which lead to **breadth first search**?
Binary Tree Utility

This week we will deep dive into useful implementations of binary trees

Binary Search Tree: An efficient implementation of a dictionary

Huffman Tree: A binary tree used to define an optimal text encoding
Improved search on a binary tree

5 3 6 7 1 4

5 3 6 7 1 4

1 3 4 5 6 7

1 3 4 5 6 7
Binary Search Tree (BST)

A BST is a binary tree $T = \text{treeNode}(\text{val}, T_L, T_r)$ such that:

$\forall n \in T_L, n.\text{val} < T.\text{val}$

$\forall n \in T_R, n.\text{val} > T.\text{val}$
Dictionary ADT

Data is often organized into key/value pairs:

Word ➔ Definition
Course Number ➔ Lecture/Lab Schedule
Node ➔ Edges
Flight Number ➔ Arrival Information
URL ➔ HTML Page
Average Image Color ➔ File Location of Image
Dictionaries in Python

```python
# The dictionary data structure
d = {}

# Change Value / Insert
d[key] = value
d[k2] = v2
d[key] = v3

# Remove value
d.pop(k2)

# Get Value
print(d[key])
```
Dictionary as a Binary Search Tree

class bstNode:
 def __init__(self, key, val, left=None, right=None):
 self.key = key
 self.val = val
 self.left = left
 self.right = right

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
</tbody>
</table>
Binary Search Tree ADT — what changed?

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree
BST In-Order Traversal
BST Insert

Base Case:

Recursive Step:

Combining:
BST Insert

insert(33)
inside class bst
def insert(self, key, val):
 self.root = self.insert_helper(self.root, key, val)

def insert_helper(self, node, key, val):

BST Insert
BST Insert

What binary would be formed by inserting the following sequence of integers: [3, 7, 2, 1, 4, 8, 0]
BST Find

Base Case:

Recursive Step:

Combining:
BST Find

find(66)
BST Find

find(9)
#inside class bst

def find(self, key):

def find_helper(self, node, key):
BST Remove

remove(40)
BST Remove

```
remove(25)
```
BST Remove

remove(13)
def remove(self, key):
 self.root = self.remove_helper(self.root, key)

def remove_helper(self, node, key):

```python
def remove(self, key):
    self.root = self.remove_helper(self.root, key)

def remove_helper(self, node, key):
```
BST Remove

What will the tree structure look like if we remove node 16 using IOS?
BST Analysis – Running Time

<table>
<thead>
<tr>
<th>Operation</th>
<th>BST Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td></td>
</tr>
<tr>
<td>traverse</td>
<td></td>
</tr>
</tbody>
</table>
Limiting the height of a tree
Option A: Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order: \([1, 3, 2, 4, 5, 6, 7]\)

Insert Order: \([4, 2, 3, 6, 7, 1, 5]\)
AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!
Height-Balanced Tree

What tree is better?

How would you describe this mathematically?