Algorithms and Data Structures for Data Science

Binary Search Tree

CS 277 March 4, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science




Learning Objectives

Review understanding of Binary Trees
Introduce the dictionary ADT
Extend ADT to Binary Search Trees

Practice recursion in the context of trees




Binary Tree Recursion

A binary tree is a tree 1 such that: e

T = None e °

or

T = treeNode(val, T;, Tp)

class treeNode:
def init (self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right

class binaryTree:
def init (self):
self.root = None

o WDN PR

b WDNR




Tree ADT

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree




Binary Tree Traversal

Last class we implemented traversals using recursion, stacks, and queues.

What implementations led to a depth first search traversal?

OO OO
@ © O¢

Which lead to breadth first search?




Binary Tree Utility

This week we will deep dive into useful implementations of binary trees

Binary Search Tree: An efficient implementation of a dictionary

Huffman Tree: A binary tree used to define an optimal text encoding




Improved search on a binary tree

513(6|7]|1|4 1(3

olRo
ojRolo o




Binary Search Tree (BST)

A BST is a binary tree T = treeNode(val, T;, T,) such that:

Vne T, n.val <T.val a

(5) (%)
Vn &€ Ty, n.val > T .val @ e
(=) &




Dictionary ADT

Data is often organized into key/value pairs:

Word = Definition

Course Number = Lecture/Lab Schedule

Node = Edges
Flight Number =  Arrival Information
URL-> HTML Page

Average Image Color = File Location of Image




Dictionaries in Python

# The dictionary data structure
d = {}

# Change Value / Insert
d[key] = value

d[k2] = v2

d[key] = v3

WoJdJouUid WNPR

# Remove value
10| d.pop (k2)

12| # Get Value
13| print (d[key])




Dictionary as a Binary Search Tree

class bstNode:
def init (self, key, val, left=None, right=None):
self.key = key
self.val = val
self.left = left
self.right = right

oo dWMNER

Key | 5| 3

o)
~
>

Value | A | B




Binary Search Tree ADT — what changed? @

Constructor: Build a new (empty) tree
Insert: Add an object into tree

Remove: Remove a specific object from tree
Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree




BST In-Order Traversal




BST Insert

Base Case:

Recursive Step:

Combining:




BST Insert insert (33)




BST Insert

# inside class bst
def insert(self, key, val):
self.root = self.insert helper(self.root, key, val)

def insert helper(self, node, key, val):

OWooJdJoUrbd WN R




BST Insert

What binary would be formed by inserting the following sequence of
integers: [3, 7, 2, 1, 4, 8, 0]




BST Find

Base Case:

Recursive Step:

Combining:




BST Find find (66)




BST Find



BST Find

#inside class bst

def find(self, key): e

OWooJdJoUrbd WN R

def find helper(self, node, key):

12
13




BST Remove remove (40)




BST Remove remove (25)




BST Remove remove (13)




BST Remove

OwoJdJoouUlbd WN PR

def remove (self, key):
self.root = self.remove helper (self.root, key)

def remove helper (self, node, key):




BST Remove

What will the tree structure look like if we remove node 16 using 10S?




BST Analysis — Running Time @

BST Worst Case
Operation

find

insert

delete

traverse




Limiting the height of a tree

N

OO
OO




Option A: Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order:[1,3,2,4,5,6, 7]

Insert Order:[4,2,3,6,7, 1, 5]




AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!




Height-Balanced Tree

What tree is better?

eee ®\@\

O

How would you describe this mathematically?




