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Learning Objectives

Review understanding of Binary Trees
Introduce the dictionary ADT
Extend ADT to Binary Search Trees

Practice recursion in the context of trees




Binary Tree Recursion

A binary tree is a tree 1 such that: e

T = None e °

or

T = treeNode(val, T;, Tp)

class treeNode:
def init (self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right

class binaryTree:
def init (self):
self.root = None
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Tree ADT

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree




Binary Tree Traversal

Last class we implemented traversals using recursion, stacks, and queues.

What implementations led to a depth first search traversal?
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Which lead to breadth first search?




Binary Tree Utility

This week we will deep dive into useful implementations of binary trees

Binary Search Tree: An efficient implementation of a dictionary

Huffman Tree: A binary tree used to define an optimal text encoding




Improved search on a binary tree
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Binary Search Tree (BST)

A BST is a binary tree T = treeNode(val, T;, T,) such that:
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Dictionary ADT

Data is often organized into key/value pairs:

Word = Definition

Course Number = Lecture/Lab Schedule

Node = Edges
Flight Number =  Arrival Information
URL-> HTML Page

Average Image Color = File Location of Image




Dictionaries in Python

# The dictionary data structure
d = {}

# Change Value / Insert
d[key] = value

d[k2] = v2

d[key] = v3
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# Remove value
10| d.pop (k2)

12| # Get Value
13| print (d[key])




Dictionary as a Binary Search Tree

class bstNode:
def init (self, key, val, left=None, right=None):
self.key = key
self.val = val
self.left = left
self.right = right
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Binary Search Tree ADT — what changed? @

Constructor: Build a new (empty) tree
Insert: Add an object into tree

Remove: Remove a specific object from tree
Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree




BST In-Order Traversal




BST Insert

Base Case:

Recursive Step:

Combining:




BST Insert insert (33)




BST Insert

# inside class bst
def insert(self, key, val):
self.root = self.insert helper(self.root, key, val)

def insert helper(self, node, key, val):
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BST Insert

What binary would be formed by inserting the following sequence of
integers: [3, 7, 2, 1, 4, 8, 0]




BST Find

Base Case:

Recursive Step:

Combining:




BST Find find (66)




BST Find



BST Find

#inside class bst

def find(self, key): e

OWooJdJoUrbd WN R

def find helper(self, node, key):
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BST Remove remove (40)




BST Remove remove (25)




BST Remove remove (13)




BST Remove
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def remove (self, key):
self.root = self.remove helper (self.root, key)

def remove helper (self, node, key):




BST Remove

What will the tree structure look like if we remove node 16 using 10S?




BST Analysis — Running Time @

BST Worst Case
Operation

find

insert

delete

traverse




Limiting the height of a tree
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Option A: Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order:[1,3,2,4,5,6, 7]

Insert Order:[4,2,3,6,7, 1, 5]




AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!




Height-Balanced Tree

What tree is better?
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How would you describe this mathematically?




