Algorithms and Data Structures for Data Science

Trees

CS 277 February 26, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Exam 1 next week
Multiple Choice / Fill in the blank exam

Covers content through Monday February 19th

See website for details

Learning Objectives

Build an understanding of the tree ADT
See the implementation details of a binary tree

Practice recursion in the context of trees

There are many types of trees

Bloom filter: 6

0

al: 0.4

10
a2: 0.35 1

SRA 00005

SRA 00007 SRA 00004 SRANN0T - SRAH00008

1 1 O SRA 00003

- 0.6
a3: 0.2 11

0.25
a4: 0.05—+11

SRA 00002 SRA|00006 Analysis

(Binary) Tree Recursion

A binary tree is a tree 1 such that: e

T = None e °

or

T = treeNode(val, T;, Tp)

class treeNode:
def init (self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right

class binaryTree:
def init (self):
self.root = None

o WDN PR

b WDNR

Visualizing trees

Sl b

S e

<

S e

S e

S e

Which of the following are binary trees?

A

Tree ADT

Tree ADT

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree

Recursion Practice: build random tree()

1|def build random tree(size, seed=None): 1| def random tree helper (keyList):
2 random. seed (seed) 2 # Base Case
3 keys = list(range(size)) 3 if len(keylist) ==
4 random. shuffle (keys) 4 return None
5 5 if len(keyList) ==
6 root = random tree helper (keys) 6 return treeNode (keyList[0])
7 return root 7
8 # Reduction Step
. 9 node = treeNode (keyList.pop (0
Ex: build_random_tree(3, 1) iy treyEast.pop (0))
11 # Combining Step
G 12 partition = random.randint (0, len(keyList))
13 leftList = keylist[:partition]
G 0 14 rightList = keyList[partition:]
15
16 node.left = random tree helper (leftList)
17 node.right = random tree helper (rightList)
. . 18
Ex: build_random_tree(3, 1001) 1ol return node
(L 8
21
22
23

Binary Tree Insert

If | want to insert a value into my tree, what information do | need?

Ex: | want to insert the value '13’.

Binary Tree Insert

Different implementations will have very different insert strategies!

In our case, we need to know the following:

1.The exact insert location e @

OB OWERORRCO
2. The value we want to insert ° e ° o

Binary Tree Insert

Choice: What happens if a node already exists at our target location?

Lets code up our choice! What is the Big O?

Binary Tree Insert Big O @

Binary Tree insert is similar to linked list insert.

If we are given the previous node (here, the parent node), its O(1).

But the act of finding a node by value is more complicated (traversal)

Binary Tree Remove

Removing a tree from a binary tree looks deceptively simple...

Ex: | want to remove the value ‘4’

Binary Tree Remove (5
Choice: How do we adjust our tree given a removed node? ° o

If the node being removed has 0 children:

Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value '8’

Binary Tree Remove

Choice: How do we adjust our tree given a removed node? ° @

If the node being removed has 1 child:

Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value ‘11’

Binary Tree Remove

Choice: How do we adjust our tree given a removed node? ° @

If the node being removed has 2 children:

Binary Tree Remove Big O @

What is the Big O of our removal algorithm on a binary tree?

0 child: 1 child: 2 child:

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

ORNOERONNOC
OO

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

ORNOERONNOC
OO

Pre-order Traversal

1| def preorderTraversal (node) :

2 if node:

3

4 print (node.val)

5

6

7 preorderTraversal (node. left)

8
18 preorderTraversal (node.right)
11

@@ ()
ONO

Pre-order:

In-order Traversal

@@ O
& ©

In-order:

Post-order Traversal

@@ O
& ©

Post-order:

Tree Traversals (1) @
(2 (1,

ORSONR OO
ORRONOIO

Lets practice our traversals!

Pre-order:

In-order:

Post-order:

Traversal vs Search

Traversal

Search

Searching a Binary Tree

There are two main approaches to searching a binary tree:

Depth First Search

Explore as far along one path as possible before backtracking

Breadth First Search @

Fully explore depth i before exploring depth i+1

Traversal vs Search |l

Pre-order, in-order, and post-order are three ways of doing which search?

Pre-order:+-a/bc*de

In-order:a-b/c+d*e

Post-order:abc/-de* +

Level-Order Traversal

A tricky recursive implementation but an easier queue implementation!

Level-order:

What search algorithm is best?

The average ‘branch factor’ for a game of
chess is ~31. If you were searching a decision
tree for chess, which search algorithm would
you use?

Improved search on a binary tree

513(6|7]|1|4 1(3

olRo
ojRolo o

Binary Search Tree (BST)

A BST is a binary tree T = treeNode(val, T;, T,) such that:

Vne T, n.val <T.val a

Vne Ty, n.val > T .val e e

