
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

February 26, 2024

Trees

Exam 1 next week
Multiple Choice / Fill in the blank exam

Covers content through Monday February 19th

See website for details

Learning Objectives

See the implementation details of a binary tree

Build an understanding of the tree ADT

Practice recursion in the context of trees

There are many types of trees

(Binary) Tree Recursion

X

AS

7

C

2

7

T = None

A binary tree is a tree such that:T

or

T = treeNode(val, TL, TR)

class treeNode:
 def __init__(self, val, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

1
2
3
4
5

class binaryTree:
 def __init__(self):
 self.root = None

1
2
3
4
5

Visualizing trees

A

XS

7

C

2 7

Y

C

S X

A 2 7 7

Y

Ø Ø

Ø Ø Ø Ø ØØØ

A

XS

2

C

2 5 A

XS

2

C

2 5

S

2

C

2

5
A

X

Which of the following are binary trees?

A B C

Tree ADT

Tree ADT

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree

Constructor: Build a new (empty) tree

Recursion Practice: build_random_tree()
def build_random_tree(size, seed=None):
 random.seed(seed)
 keys = list(range(size))
 random.shuffle(keys)

 root = random_tree_helper(keys)
 return root

1
2
3
4
5
6
7

def random_tree_helper(keyList):
 # Base Case
 if len(keyList) == 0:
 return None
 if len(keyList) == 1:
 return treeNode(keyList[0])

 # Reduction Step
 node = treeNode(keyList.pop(0))

 # Combining Step
 partition = random.randint(0, len(keyList))
 leftList = keyList[:partition]
 rightList = keyList[partition:]

 node.left = random_tree_helper(leftList)
 node.right = random_tree_helper(rightList)

 return node

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Ex: build_random_tree(3, 1)

02

1

Ex: build_random_tree(3, 1001)

2

0

1

Binary Tree Insert
If I want to insert a value into my tree, what information do I need?

112

4

1

5

6

8 103

7 9

Ex: I want to insert the value ’13’.

Binary Tree Insert
Different implementations will have very different insert strategies!

112

4

1

5

6

8 103

7 9

In our case, we need to know the following:

1. The exact insert location

2. The value we want to insert

Binary Tree Insert
Choice: What happens if a node already exists at our target location?

112

4

1

5

6

8 103

7 9

Lets code up our choice! What is the Big O?

Binary Tree Insert Big O
Binary Tree insert is similar to linked list insert.

112

4

1

5

6

8 103

7 9

If we are given the previous node (here, the parent node), its O(1).

But the act of finding a node by value is more complicated (traversal)

Binary Tree Remove
Removing a tree from a binary tree looks deceptively simple…

112

4

1

5

6

8 103

7 9

Ex: I want to remove the value ’4’.

Binary Tree Remove
Choice: How do we adjust our tree given a removed node?

If the node being removed has 0 children:

4

5

6

Binary Tree Remove

112

4

1

5

6

8 103

7 9

Ex: I want to remove the value ’8’.

When we remove, we have to be careful not to delete a tree branch!

Binary Tree Remove

If the node being removed has 1 child:

Choice: How do we adjust our tree given a removed node?

11

8 10

7 9

Binary Tree Remove

112

4

1

5

6

8 103

7 9

Ex: I want to remove the value ’11’.

When we remove, we have to be careful not to delete a tree branch!

Binary Tree Remove 11

8 10

7 9If the node being removed has 2 children:

Choice: How do we adjust our tree given a removed node?

Binary Tree Remove Big O
What is the Big O of our removal algorithm on a binary tree?

0 child: 1 child: 2 child:

Tree Traversal

*-

b

+

/

c

d ea

A traversal of a tree T is an ordered way of visiting every node once.

Tree Traversal

*-

b

+

/

c

d ea

A traversal of a tree T is an ordered way of visiting every node once.

Pre-order Traversal
def preorderTraversal(node):
 if node:

 print(node.val)

 preorderTraversal(node.left)

 preorderTraversal(node.right)

1
2
3
4
5
6
7
8
9

10
11

*-

b

+

/

c

d ea

Pre-order:

In-order Traversal

*-

b

+

/

c

d ea

In-order:

Post-order Traversal

*-

b

+

/

c

d ea

Post-order:

Tree Traversals
112

4

1

5

6

8 103

7 9

Pre-order:

In-order:

Post-order:

Lets practice our traversals!

Traversal vs Search

Traversal

Search

D

CB

F

A

E

G

Searching a Binary Tree

U

O M

C W

A

T

E S

IN

There are two main approaches to searching a binary tree:

Depth First Search

112

4

1

5

6

8 103

7 9

Explore as far along one path as possible before backtracking

Breadth First Search

112

4

1

5

6

8 103

7 9

Fully explore depth i before exploring depth i+1

Traversal vs Search II
Pre-order, in-order, and post-order are three ways of doing which search?

*-

b

+

/

c

d ea

Pre-order: + - a / b c * d e

In-order: a - b / c + d * e

Post-order: a b c / - d e * +

Level-Order Traversal

Level-order:

A tricky recursive implementation but an easier queue implementation!

*-

b

+

/

c

d ea

What search algorithm is best?
The average ‘branch factor’ for a game of
chess is ~31. If you were searching a decision
tree for chess, which search algorithm would
you use?

Improved search on a binary tree

5 3 6 7 1 4

1

63

5

4 7

1 3 4 5 6 7

7

63

5

1 4

Binary Search Tree (BST)

13

10 25

12 37

38

51

40 84

8966

95

∀n ∈ TL, n . val < T . val

∀n ∈ TR, n . val > T . val

A BST is a binary tree such that:T = treeNode(val, TL, Tr)

