Algorithms and Data Structures for Data Science

Trees

CS 277 February 26, 2024
Brad Solomon

/1N

UNIVERSITY OF -

URBANA-CHAMPAIGN
Department of Computer Science

@

Multiple Choice / Fill in the blank exam | < lgo
ol((q?

(!

Exam 1 next week (’\))
C?’ ootk
<)E

Covers content through Mond?y February 19th

E

See website for details [‘j/z e J
O(/\ *HV\) "_]ﬂ,w (OOQ‘ k &/\/ﬂ

Bl=—— | " s al vk
— R 1z \ A\ \@/\, \wag
O(”“/‘O (9 f)) ——

L1290

Learning Objectives

Build an understanding of the tree ADT @

See the implementation details of a binary tree
~ I /\/_’

Practice recursion in the context of trees

7

There are many types of trees

Hv«“ﬁ men 11793 % — %%1/ X ‘7

al: 0.4

10
a2: 0.35

110 -
: 0.6

a3: 0.2 11

0.25
a4: 0.05—111

. ' (— [he) 8
(Binary) Tree Recursion Lidloe > “701\?4,1

(> 07O
A binary tree is a tree 7 such that: H FQ

T = None e °

) ONIRO
T = treeNode(val, T;, Tp)

- A

class treeNode:
def init (self, val, left=None, right=None):
self.val = val c/’€;>
self.left = left
self.right = right

class binaryTree:
def init (self):
self.root = None

o WDN PR

b WDNR

Visualizing trees

() w

O R@
(v @@ -

5 \

| ef* vgl CighT
P VI
/ / \
LY) I S !
v v v v v v
@ 0@ 1) o 0 ?
4 4
r Y < %

Which of the following are binary trees?

Tree ADT

Plape/ie 3
E@()\ Non ¢

Pw\ml.\aai
L’;Tla",@f (V:ﬂk n“ ﬂ()(]‘a

N An Jfk'v

DAl o gy g

Ly gk Node [somnel, [uoher

Wss qWQ)

55 Newoe)(q*o\

Tree ADT RAEAvEAIS4D @
Constructor: Build a new (empty) tree
DL chote
4

RS

Insert: Add an object into tree
Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree ®€+>

(LA

Recursion Practice: build random tree() 5
3| %" andon. seed (seady Ao PeeHRY 7
| ks Bectasesatze) | (rod =
2 root = random tree helper(keys)j ‘&(& ase ’ ._; NO’\€
7 return root Ol 5_‘_ Q_”L' S\<€ O .
Ex: build_ random _tree _g_,ze/ﬁ;_ (o= tee o {"‘
I/AC) ;
0““0 s)
2 0 LO Bedogiy SYPL Rewmn fimm 1He g
<
Ex: build_random tree 3 1001)
e \ $sle val t(n- \) **,”;L
(ombalas Stre’) oA ot
e) @ _ ;(er Nc) Q(qu
0 ((ecm(‘ (/é(lvf‘f]

Recursion Practice: build random tree()

1|def build random tree(size, seed=None): 1| def random tree helper (keyList):
2 random. seed (seed) 2 # Base Case
3 keys = list(range(size)) 3 if len(keylist) == 0:@
4 random. shuffle (keys) 4 return None
5 5 if len(keyList) == 1:
6 root = random tree helper (keys) 6 return treeNode (keyList[0])
7 return root 7 N—
8 # Reduction Step w
. 9 node = treeNode (keyList.pop (0
Ex: build_random_tree(3, 1) iy el treyiase.por(0))
11 # Combining Step /
e 12 partition = random.randint (0, len(keyList)
13 leftList = keylist[:partition]
o o 14 rightList = keyList[partition:]
15
16 node.left = random tree helper (leftList)
17 node.right = random tree helper (rightList)
. . 18
Ex: build_random_tree(3, 1001) 1ol return node
Dy, 079 :
/ @ |21
(2 A E Y
— 2
C a0y 2

o None S cgbal @j')@

. < . d e 1) :"/ I
Binary Tree Insert \nso,i-(uqlzig/ poryh < 6, direchin= Tpsl)

If | want to insert a value into my tree, what information do | need?

Ex: | want to insert the value "13. by U onden e [)
We /PQ& +<) }(c/\dvv P‘d."\]— OF /\3' @ e
San bl St 2 o

O OEROENC
Steps’ ° @ e 0

3 Mk now Jiakt (12) @,

Binary Tree Insert

Different implementations will have very different insert strategies!

In our case, we need to know the following:

1.The exact insert location
cooct o o,

G Yo+, e e o Q
2. The value we want to insert ° e ° o

Binary Tree Insert

Choice: What happens if a node already exists at our target location?

Frgory (X, 2 / "/i.‘aw'Q @\ o

Lets code up our choice! What ?s the Big O?

———

Binary Tree Insert %= S ppe V&l

Choice: What happens if a node already exists at our target location?

Frgrt (X, & oy) epts 40 (x)

/ .

oS CL"u
cholce () pra X ol P4 (1)

| o\ (> ol (22 tmp (1)
| /quhl few Yot N < — ¥ p
N e S bt os ta V) OVSOWROENO
5)/4@ hew tN as ch'® C\)(/‘_ ° e ° 0
‘4) aky tmpoos oM oR /0_(_\)/ @

Lets code up our choice! What is the Big O? { C){() O(I)

“p >

F o (ulity ote

% 7(Mk wast (4]
Binary Tree Insert Big O _— O
@, %090 @

D
Binary Tree insert is similar to linked list insert. WL\‘/ O(”‘7 Q
Cr
If we are given the previous node (here, the parent node), its O(1). d-,
— I - Oy

But the act of finding a node by value is more complicated (traversal)

;" ' /' e\
>< Pul e} e /9 l
Velve / ,!ﬂ ° Q
S o £ 1 o §/ A’
J M) ‘#’5 frd I\C)k(. ° ° ° e

Binary Tree Remove

Removing a tree from a binary tree looks deceptively simple...

Ex: | want to remove the value ‘4",
e Comrd 1oV
[We nedd foray o7 O | e

Binary Tree Remove (5
Choice: How do we adjust our tree given a removed node? e

If the node being removed has 0 children: (@W\c)vc (§ "tf;"
AR {*Fa . Pavy) ,Q d Ve dfcvl /

Fwev\‘,&tfe(% pd]UOAQ O (J)

/ -

Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value '8’

Binary Tree Remove

(guone (Rt dir= [2

, 12 ‘

N@-No?,\(m Neft hps ere < Poeat, diechenz b Iri«f«f} /\de?
V& . riht oxisks!

If the node being removed has 1 child:

/UO&? (”)- [ept - (del1), loft, Cpht

ol

Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value "11. (b mti o

C}/b\(e (1) Assigm orkor [(ules R &7 e
[rcA\((- (B\Yo gulap (epond Va've \,I laA e ﬁ m
& . (e I‘{',‘ e e e Q
° 0 ° o i

O\)O
\)@

Y

Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value ‘11’ v

Cheie (8)o Swap (twond UV
(’?n‘b\ S ”_l

BE
Binary Tree Remove ceme (N

Choice: How do we adjust our tree given a removed node?

If the node being removed has 2 children: O
\> b& Gled oo £ nd < (2 f O(/l)

/ \

(
9\> SW4P V<\Le Ghon \eo £ _’1 fole Z‘Od Cg

Fhec b (x) . val = il Me(D),W)

§> RQW now Wok w) feoget Unlug

2 O() e, 0 UG
-

Binary Tree Remove Big O @

What is the Big O of our removal algorithm on a binary tree?

0 child: O(\} 1 child: O(() 2chi|d:O/n)

~——

Word Cas

("€ mao ' C)(V\)

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

A*“ eulr A\ £ &
1 \ @ + - o /bC ¢
) Lak ot Now)R

3) Recurse (€64
/

2) Recose /7 "

A

\Vg
— !" d
& E

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

ORNOERONNOC
OO

Pre-order Traversal

def preorderTraversal (node) :
if node:

print (node.val)
preorderTraversal (node. left)

preorderTraversal (node.right)
—_—

RPoOoOwoOoJdJoUlbdWDNR

B

Pre-order: .\ L pf(/)

In-order Traversal

@@ O
& ©

In-order:

Post-order Traversal

@@ O
& ©

Post-order:

Tree Traversals (1) @
(2 (1,

ORSONR OO
ORRONOIO

Lets practice our traversals!

Pre-order:

In-order:

Post-order:

Traversal vs Search

Traversal

Search

Searching a Binary Tree

There are two main approaches to searching a binary tree:

Depth First Search

Explore as far along one path as possible before backtracking

Breadth First Search @

Fully explore depth i before exploring depth i+1

Traversal vs Search |l

Pre-order, in-order, and post-order are three ways of doing which search?

Pre-order:+-a/bc*de

In-order:a-b/c+d*e

Post-order:abc/-de* +

Level-Order Traversal

A tricky recursive implementation but an easier queue implementation!

Level-order:

What search algorithm is best?

The average ‘branch factor’ for a game of
chess is ~31. If you were searching a decision
tree for chess, which search algorithm would
you use?

Improved search on a binary tree

513(6|7]|1|4 1(3

olRo
ojRolo o

Binary Search Tree (BST)

A BST is a binary tree T = treeNode(val, T;, T,) such that:

Vne T, n.val <T.val a

Vne Ty, n.val > T .val e e

