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Learning Objectives

Build an understanding of the tree ADT @

See the implementation details of a binary tree
~ I /\/\_’

Practice recursion in the context of trees
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There are many types of trees
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A binary tree is a tree 7 such that: H FQ

T = None e °

) ONIRO
T = treeNode(val, T;, Tp)
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class treeNode:
def init (self, val, left=None, right=None):
self.val = val c/’€;>
self.left = left
self.right = right

class binaryTree:
def init (self):
self.root = None
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Visualizing trees
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Which of the following are binary trees?




Tree ADT

Plape/ie 3
E@()\ Non ¢

Pw\ml.\aai
L’;Tla",@f (V:ﬂk n“ ﬂ()(]‘a

N An Jfk'v

DAl o gy g

Ly gk Node [somnel, [uoher

Wss qWQ)

55 Newoe )(q*o\




Tree ADT RAEAvEAIS4D @
Constructor: Build a new (empty) tree
DL chote
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Insert: Add an object into tree
Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree ®€+>
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Recursion Practice: build random tree() 5
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Recursion Practice: build random tree()

1|def build random tree(size, seed=None): 1| def random tree helper (keyList):
2 random. seed (seed) 2 # Base Case
3 keys = list(range(size)) 3 if len(keylist) == 0:@
4 random. shuffle (keys) 4 return None
5 5 if len(keyList) == 1:
6 root = random tree helper (keys) 6 return treeNode (keyList[0])
7 return root 7 N—
8 # Reduction Step w
. 9 node = treeNode (keyList.pop (0
Ex: build_random_tree(3, 1) iy el treyiase.por(0))
11 # Combining Step /
e 12 partition = random.randint (0, len(keyList)
13 leftList = keylist[:partition]
o o 14 rightList = keyList[partition:]
15
16 node.left = random tree helper (leftList)
17 node.right = random tree helper (rightList)
. . 18
Ex: build_random_tree(3, 1001) 1ol  return node
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If | want to insert a value into my tree, what information do | need?

Ex: | want to insert the value "13. by U onden e [)
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Binary Tree Insert

Different implementations will have very different insert strategies!

In our case, we need to know the following:

1.The exact insert location
cooct o o,
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2. The value we want to insert ° e ° o




Binary Tree Insert

Choice: What happens if a node already exists at our target location?

Frgory (X, 2 / "/i.‘aw'Q @\ o

Lets code up our choice! What ?s the Big O?
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Binary Tree Insert %= S ppe V&l

Choice: What happens if a node already exists at our target location?

Frgrt (X, & oy ) epts 40 (x )
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Lets code up our choice! What is the Big O? { C){() O(I)
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Binary Tree insert is similar to linked list insert. WL\‘/ O(”‘7 Q
Cr
If we are given the previous node (here, the parent node), its O(1).  d-,
— I - Oy

But the act of finding a node by value is more complicated (traversal)
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Binary Tree Remove

Removing a tree from a binary tree looks deceptively simple...

Ex: | want to remove the value ‘4",
e Comrd 1oV
[ We nedd foray o7 O | e




Binary Tree Remove (5
Choice: How do we adjust our tree given a removed node? e

If the node being removed has 0 children: (@W\c)vc (§ "tf;"
AR {\*Fa . Pavy) ,Q d Ve dfcvl /

Fwev\‘,&tfe(% pd ]UOAQ O (J)

/ -




Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value '8’




Binary Tree Remove
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If the node being removed has 1 child:
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Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value "11. (b mti o
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Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!

Ex: | want to remove the value ‘11’ v
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Binary Tree Remove ceme (N

Choice: How do we adjust our tree given a removed node?

If the node being removed has 2 children: O
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Binary Tree Remove Big O @

What is the Big O of our removal algorithm on a binary tree?

0 child: O(\} 1 child: O(() 2chi|d:O/n)
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Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.
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Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.
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Pre-order Traversal

def preorderTraversal (node) :
if node:

print (node.val)
preorderTraversal (node. left)

preorderTraversal (node.right)
—_—
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In-order Traversal
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In-order:




Post-order Traversal
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Post-order:




Tree Traversals (1) @
(2 (1,
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Lets practice our traversals!

Pre-order:

In-order:

Post-order:




Traversal vs Search

Traversal

Search




Searching a Binary Tree

There are two main approaches to searching a binary tree:




Depth First Search

Explore as far along one path as possible before backtracking




Breadth First Search @

Fully explore depth i before exploring depth i+1




Traversal vs Search |l

Pre-order, in-order, and post-order are three ways of doing which search?

Pre-order:+-a/bc*de

In-order:a-b/c+d*e

Post-order:abc/-de* +




Level-Order Traversal

A tricky recursive implementation but an easier queue implementation!

Level-order:




What search algorithm is best?

The average ‘branch factor’ for a game of
chess is ~31. If you were searching a decision
tree for chess, which search algorithm would
you use?




Improved search on a binary tree
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Binary Search Tree (BST)

A BST is a binary tree T = treeNode(val, T;, T,) such that:

Vne T, n.val <T.val a

Vne Ty, n.val > T .val e e




