Algorithms and Data Structures for Data Science Trees

CS 277
Brad Solomon

February 26, 2024

UNIVERSITY OF ILLINOIS
URBANA-CHAMPAIGN
Department of Computer Science

Learning Objectives

Build an understanding of the tree ADT

See the implementation details of a binary tree

Practice recursion in the context of trees

There are many types of trees

(Binary) Tree Recursion List Node \rightarrow Lintel (iss $\omega \rightarrow 0$ A binary tree is a tree T such that: H

$$
T=\text { None }
$$

or

$$
T=\operatorname{treeNode}\left(\mathrm{val}, T_{L}, T_{R}\right)
$$

[^0]
Visualizing trees

Which of the following are binary trees?

Yes!

At most 2 ch.idmom Yes!

Tree ADT
Propooltes
\rightarrow (out Node
functions
\rightarrow Tcourge $\binom{$ visit all nodes }{ in an ard }
G add or insert data
L) get Node / Search / Lookup access a note
\rightarrow Remove data

Tree ADT

$D \rightarrow D \rightarrow \square \rightarrow D$

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree

Recursion Practice: build_random_tree()

Recursion Practice: build_random_tree()

```
def build random tree(size, seed=None):
    random. seed (seed)
    keys = list(range(size))
    random.shuffle(keys)
    root = random_tree_helper(keys)
    return root
```

Ex: build_random_tree(3, 1)

Ex: build_random_tree $(3,1001)$

\# Base Case
if len (keyList) return None
if len(keyList) $==1$:
return treeNode (keyList[0])
\# Reduction Step
node $=$ treeNode (keyList.pop (0))
\# Combining Step
partition $=$ random.randint(0, len(keyList))
leftList = keyList[:partition]
rightList $=$ keyList[partition:]
node.left $=$ random tree helper (leftList)
node.right = random_tree_helper (rightList)
return node
(0)

Binary Tree Insert

$$
\text { intort (val }=13 \text {, prat a } 6 \text {, direction }=\text { "pent" }
$$

If I want to insert a value into my tree, what information do I need?
Ex: I want to insert the value ' 13 '.
we need to know point of 13 \rightarrow and the child "direction"
(13) build Enter tree ()

Steps:

1) Matte new Node (B)

Binary Tree Insert

Different implementations will have very different insert strategies!

In our case, we need to know the following:

1. The exact insert location
G Pdrat
G diyetrion
2. The value we want to insert

Binary Tree Insert
Choice: What happens if a node already exists at our target location?
Insert ($X, 2$ "Right")
choric (1): Add x and put current node as child
choice (2): Delete old brach
(3): Replete value

Lets code up our choice! What is the Big O?

Binary Tree Insert

$$
x=5 \quad \text { tap }=\text { Val }
$$

Choice: What happens if a node already exists at our target location?

$$
I_{\text {nor }}(X, 2, " R \text { Phi" })
$$

$$
\text { 2. c. क्यht }=+N(x)
$$

choice (1): Add x and put current node as child

1) Mate new tree Node () $O(1)$
2) Sake ald branch as 'mp $O(1)$
3) Add new $+N$ as child d(1) 4) Add tamp us child or $+N$.

Lets code up our choice! What is the Big O ?

Binary Tree Insert Big O

Binary Tree insert is similar to linked list insert.
If we are given the previous node (here, the parent node), its $\mathrm{O}(1)$.
But the act of finding a node by value is more complicated (traversal) insert (Heeled.)

$$
\begin{array}{cc}
\text { insert (Parent } \\
\text { value, } & \begin{array}{c}
\text { ny } \\
\text { value, }
\end{array} \\
\text { inerden) }
\end{array}
$$

Goon) it I reed

Binary Tree Remove

Removing a tree from a binary tree looks deceptively simple...
Ex: I want to remove the value ' 4 '.
\rightarrow We need parent of renowned node!

Binary Tree Remove
Choice: How do we adjust our tree given a removed node?

If the node being removed has 0 children:
2 info: Paras f direction
parent. direction = None

$$
\text { cemare }(5,1 / \mathrm{eft} \text { ' })
$$

Binary Tree Remove

When we remove, we have to be careful not to delete a tree branch!
Ex: I want to remove the value ' 8 '.

Binary Tree Remove
Choice: How do we adjust our tree given a removed node?
If the node being removed has 1 child:

$N B=\operatorname{Nod}(I I)$. left has one child
N8. right exists!

$$
\begin{aligned}
& \text { Pout, direction }=\binom{\text { child of }}{\text { reused note }} \\
& \text { Node (II). left }=\text { Made (II). left. cisht }
\end{aligned}
$$

Binary Tree Remove
When we remove, we have to be careful not to delete a tree branch!
Ex: I want to remove the value ' 11 '.
claire (1): Assign order Ilules for ever combination
chevre (2): Swap remand value v/ kloof Cohen remove it;

Binary Tree Remove
When we remove, we have to be careful not to delete a tree branch!
Ex: I want to remove the value ' 11 '.
chevre (1): Assign order Ilules for ever combination
Chevre (2): Swap remand valve v/ loot Cohen remove it,'

Binary Tree Remove
cemove (Node)

Choice: How do we adjust our tree given a removed node?
If the node being removed has 2 children:

1) Descend and find a leaf $O(n)$
2) Swap Value btw leaf f node $\mathbb{U} O(1)$
3) Remove now Node w) terser value G O(1) leaf: \quad o chivcase

Binary Tree Remove Big O
What is the Big O of our removal algorithm on a binary tree?
0 child:
$O(1)$
1 child:
$O(1)$
2 child:
remap is on)

Tree Traversal
A traversal of a tree T is an ordered way of visiting every node once.
At each ide

1) Look at Node
2) Recuse left
3) Recuse risk'

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

Pre-order Traversal

In-order Traversal

In-order:

Post-order Traversal

Post-order:

Tree Traversals

Lets practice our traversals!

Pre-order:

In-order:

Post-order:

Traversal vs Search

Traversal

Search

Searching a Binary Tree

There are two main approaches to searching a binary tree:

Depth First Search

Explore as far along one path as possible before backtracking

Breadth First Search

Fully explore depth i before exploring depth i+1

Traversal vs Search II

Pre-order, in-order, and post-order are three ways of doing which search?

Pre-order: +-a/b c*de

In-order: a - b / c + d * e

Post-order: a b c / - d e * +

Level-Order Traversal

A tricky recursive implementation but an easier queue implementation!

Level-order:

What search algorithm is best?

The average 'branch factor' for a game of chess is ~ 31. If you were searching a decision tree for chess, which search algorithm would you use?

Improved search on a binary tree

Binary Search Tree (BST)

A BST is a binary tree $T=\operatorname{treeNode}\left(v a l, T_{L}, T_{r}\right)$ such that:
$\forall n \in T_{L}, n . v a l<T . v a l$
$\forall n \in T_{R}, n . v a l>T . v a l$

[^0]: 1 class binaryTree:
 def __init__(self):
 2 def

