Algorithms and Data Structures for Data Science Trees

CS 277 Brad Solomon February 26, 2024

Exam 1 next week

Multiple Choice / Fill in the blank exam

Covers content through Monday February 19th

$$O(n+m)$$

$$B = \frac{1}{2}$$

$$O(n \times m)$$

Learning Objectives

Build an understanding of the tree ADT

See the implementation details of a binary tree

Practice recursion in the context of trees

(Binary) Tree Recursion List Note & Linke) (ist

A **binary tree** is a tree T such that: \vdash

$$T = None$$

or

$$T = treeNode(val, T_L, T_R)$$


```
class treeNode:
   def init (self, val, left=None, right=None):
       self.val = val
       self.left = left
       self.right = right
```

```
class binaryTree:
   def init (self):
       self.root = None
```

Visualizing trees

Which of the following are binary trees?

Tree ADT

Proporties To coot Note

functions. Gy Tlourse (Visik all nodes) Sall or insert tata Ly get Node / Search / Lookup a(less of note is Remove tota

Tree ADT

Constructor: Build a new (empty) tree

Insert: Add an object into tree

Remove: Remove a specific object from tree

Traverse: Visit every node in tree (all objects)

Search: Find a specific object in the tree

Recursion Practice: build_random_tree() def build_random_tree(size, seed=None): y Have MPLA 1.st OF

```
def build_random_tree(size, seed=None):
    random.seed(seed)
    keys = list(range(size))
    random.shuffle(keys)

root = random_tree_helper(keys)
return root
```

Ex: build_random_tree(3, 1)

Ex: build_random_tree(3, 1001)

Recursion Practice: build_random_tree()

```
def build_random_tree(size, seed=None):
    random.seed(seed)
    keys = list(range(size))
    random.shuffle(keys)

root = random_tree_helper(keys)
return root
```

Ex: build_random_tree(3, 1)

Ex: build_random_tree(3, 1001)

```
def random tree helper(keyList):
       # Base Case
       if len(keyList) == 0:
           return None
       if len(keyList) == 1
           return treeNode(keyList[0])
       # Reduction Step
 8
       node = treeNode(keyList.pop(0)
 9
10
       # Combining Step
11
       partition = random.randint(0, len(keyList))
12
       leftList = keyList[:partition]
13
       rightList = keyList[partition:]
14
15
       node.left = random tree helper(leftList)
16
       node.right = random tree helper(rightList)
17
18
19
       return node
20
21
22
23
```

If I want to insert a value into my tree, what information do I need?

Ex: I want to insert the value '13'.

build Endem Aree () 10

Different implementations will have very different insert strategies!

In our case, we need to know the following:

1. The exact insert location

2. The value we want to insert

Choice: What happens if a node already exists at our target location?

Lets code up our choice! What is the Big O?

Choice: What happens if a node already exists at our target location?

Binary Tree Insert Big O

ot insert.

Binary Tree insert is similar to linked list insert.

If we are given the *previous* node (here, the parent node), its O(1).

But the act of *finding* a node by value is more complicated (traversal)

Removing a tree from a binary tree looks deceptively simple...

Ex: I want to remove the value '4'.

Choice: How do we adjust our tree given a removed node?

If the node being removed has 0 children:

When we remove, we have to be careful not to delete a tree branch!

Ex: I want to remove the value '8'.

Choice: How do we adjust our tree given a removed node?

If the node being removed has 1 child:

When we remove, we have to be careful not to delete a tree branch!

chaile (1): Assign order Mules for every combination Ex: I want to remove the value '11'. (heir (d). Swap removed value 1 lef 2

(7 The cenone it; 10

When we remove, we have to be careful not to delete a tree branch!

Ex: I want to remove the value '11'.

Chaire (1): Assign order l'ules for every

Chaire (2): Swap remond value w/ lost

(7 thu comme it;

3

4

6

9

Choice: How do we adjust our tree given a removed node?

cemove (Node)

If the node being removed has 2 children:

Binary Tree Remove Big O

What is the Big O of our removal algorithm on a binary tree?

0 child: $\bigcirc(1)$

1 child: $\mathcal{O}(1)$

2 child:

Worst (us

remar is O(n)

Tree Traversal

A **traversal** of a tree T is an ordered way of visiting every node once.

Tree Traversal

A **traversal** of a tree T is an ordered way of visiting every node once.

Pre-order Traversal

Pre-order:

```
def preorderTraversal(node):
    if node:
        print(node.val)

preorderTraversal(node.left)

preorderTraversal(node.right)

preorderTraversal(node.right)
```

pt(t)

y pt(-)

y pt(q)

h pt(1)

In-order Traversal

In-order:

Post-order Traversal

Post-order:

Tree Traversals

Lets practice our traversals!

Pre-order:

In-order:

Post-order:

Traversal vs Search

Traversal

Search

Searching a Binary Tree

There are two main approaches to searching a binary tree:

Depth First Search

Explore as far along one path as possible before backtracking

Breadth First Search

Fully explore depth i before exploring depth i+1

Traversal vs Search II

Pre-order, in-order, and post-order are three ways of doing which search?

Pre-order: + - a / b c * d e

In-order: a - b / c + d * e

Post-order: a b c / - d e * +

Level-Order Traversal

A tricky recursive implementation but an easier queue implementation!

Level-order:

What search algorithm is best?

The average 'branch factor' for a game of chess is ~31. If you were searching a decision tree for chess, which search algorithm would you use?

Improved search on a binary tree

Binary Search Tree (BST)

A **BST** is a binary tree $T = treeNode(val, T_L, T_r)$ such that:

$$\forall n \in T_L, n.val < T.val$$

$$\forall n \in T_R, n.val > T.val$$

