Algorithms and Data Structures for Data Science

Recursion

CS 277 February 21, 2024
Brad Solomon

UNIVERSITY OF ()

ILLINOIS

Department of Computer Science

Exam 1 next week
Multiple Choice / Fill in the blank exam

Covers content through Monday February 19th

P —— S

-

See website for details — gtom]
& %‘/ “/rov\ */’:‘n(\qma,, }&lS

& R's O
O Gislg
& Sterh 4 queve

<L ;heq"lﬁ

Learning Objectives

Introduce recursion in the context of trees
p— Q

Explore recursion in the context of loops
)

Practice recursion in the context of lists

Batk ts Teec pexd Weoly
5 ADT = Tt > Bry O

Cle (,\,/(\f-\,

Trees

A non-linear data structure defined,recursively as a collection of nodes

where each node contains a value and zero or more connected nodes.
/\,

(In CS 277) a tree is also:

1) Acyclic — NO C'y(ltf$ " €>Kﬁf_5'
/\[O P‘r‘ln £ e /\)d))Q toy |‘r$p\f

2)Rooted — (e o Same ol (o llobe

CUy ok [n tee Can be (eabdd by pett
G\[Qw\ [OO’I"

Node: The vertex of a tree

?

Edge: The [theoretical]
connecting path between nodes

Path: A list of the edges (or
nodes) traversed to go from node
start to node end

c- B-E-F
retdbor G B) (EP)
GE)

Tree Terminology
’ \
7N (- Perent Parent: The precursor node to
@ V\ | the current node is the ‘parent’
oi & \> m Child: The nodes linked by the
S % | current node are it's ‘children’
O ’ (YL

O) hilkrn Neighbor: Parent or child

OO ol

Degree: The number of children

0] -0 for a given node

A—‘\‘ /Vl0$\' C“C?(fc a

Tree Terminology

(Q Jv
> Root: The start of a tree (the only
e B node with no parent).
L nfe1e L
G\ N ode Leaf: The terminating nodes of a
/N tree (have no children)
oORo he S
an

Internal: A node with at least one

(o) ‘Q child
)

Tree Terminology Practice

What is the longest path in the tree?

< C-B - -E
o @ What is the neighbors of node B?
OF RO MBI

Q One ot ma . p'¢
How many leaves does this tree have?
G F, E A T e |eavs /Ll)
I /

What is the largest degree in the tree?

2 (Note B

Tree Terminology

Height: the length of the longest path from the root to a leaf
)

@ 2
he'dk of O e

h= 1]

Tree Height Calculation Breakdown

How does a program identify the height of a tree?

o (b =) = [4 H(B)&r H(() HORYIE

L \/’JH(“Q H(s)

Tree Height Calculation Breakdown der L fghi (k)
How does a program identify the height of a tree? p,g?l;h“('[)

The height of my tree is 1 plus the height of my children!

To get H(A)

| need H(B) and H(C)

L eaf hes heiphT = O | need H(D) and H(E) and...
Tlee of Noge pddes = —| I need H(F) and H(G) and...

Programming Toolbox: Recursion

The process by which a function calls itself directly or indirectly is
called recursion.

Don’t panic — we've already used it before!

RECURSION
RECURSION

RECURSION
RECURSION

Linked List Recursion

A linked list is a list L. such that:
7/
L. = None C

or

L = listNode(val, L_,.,)

class listNode:
def init (self, val, next=None):
self.val = val
self .next = next

[_
2 o Nt /\bhe

b WdhNhR

. . AR
(Binary) Tree Recursion Q\/ éo
A binary tree is a tree 1 such that: f e

T = None No e °

{ e ha»c
or Nex bt 4 (1o

Lo (o I

T = treeNode(val, T;, Tp)

class treeNode:
def init (self, val, left=None, right=None):

self.val = val
self.left = left
self.right = right

b WdhNhR

Visualizing a binary tree

1| class treeNode:

2 def init (self, val, left=None, right=None):
3 self.val = val

4 self.left = left

5 self.right = right
l1|a = treeNode('a') —\

2|b = treeNode('b')

3| c = treeNode('c')

4/d = treeNode('d')

5/e = treeNode('e')

6| £ = treeNode('f')_—/&

7!g = treeNode('g')

8

9/la.left = b
10|a.right= c
11|b.right = d
12|b.left = e
13|c.right = £
14| f.right = g

Visualizing a binary tree... recursively

1| class treeNode:

2 def init (self, val, left=None, right=None):

3 self.val = val

4 self.left = left

5 self.right = right

l1|a = treeNode('a')

2|b = treeNode('b')

3|c = treeNode('c')

4/d = treeNode('d')

5/e = treeNode('e')

6| £f = treeNode('f')

7!g = treeNode('g')

8

9/a.left = b
10|a.right= c
11|b.right = d
12|b.left = e
13|c.right = £ (

lght = CiolF
14| f.right = g /@74{)
<

a = treeNode('a', treeNode('b’,treeNode(‘e'),h treeNode('d')),

treeNode(‘'c', None, treeNode(‘'f’, None, treeNode('qg'))))
'cPZ — 3 W 7

Programming Toolbox: Recursion /\5%

At its core, recursion is nothing more than anot(\rjr way of ertmgT loops:

oz- l'~<
T 5 YL)] Ry,
1 RO 218
2 (>)
l 098
V4 3
1|def F:cursivcanor(n): Y V¢ Crise lé) ‘&1
2 if n == 0:
rint(n Sldff‘
2 zetu:::r(l)6'7 @\n(L’) fe (V/SQ }>
2 %trecursiveFor(n—l)\‘U L’) F((UK((l)
Z pri?t(n)ﬂ.‘a é/ /&/
(¢ e 1S
2

3

. . X
Programming Toolbox: Recursion 4~

Lets deep dive into whats actually happening here:

. | print (2)
@/Me o recursiveFor(2) . , P

1| def recursiveFor (n) : \(‘a” ' ?\ @ (.n¢ |

if n == 0: Ve
g print (n) .‘ XP‘"‘& a (4/
4 return .
5 .
6 recursiveFor (n-1) .
7 \
8 print(n) .

recursiveFor(1) . -

9, 1,9 @ e ¢ piatl 1)
1
2 i w‘:u Cond 4\:\]
3 wiJe (MR
g | left off v
6 ’ .
] ' recursiveFor(0)
8 . Pr.‘/\’\'(d> :) 4()

i Valus T\

Programming Practice: Recursive Code

‘ N (mell
What is the following code doing? \) 6“"‘/3 g Specifrc (5
g O

r;;urr.l i C“.: ; (tenrSe ’3) /Q/\

return recurse(i-1)+i Ct /
— L fecerse (1) teia O

10\\/ %f(ru/Se(O)

) Cxample

(6 I - VVIN O B

def recurse(inlist):

if len(inList)==0:
return 0

inList.pop ()

return recurse (inList)+1

OWoJdJdooUlbd WDN PR

Programming Toolbox: Recursion

Anything that can be solved with a loop can be solved with recursion

But sometimes its easier to code up a solution recursively

R | can’t loop through a tree with for or while...

° 0 But | can loop through the tree using recursion!

ORORY
©

Programming Toolbox: Recursion

When thinking recursively, break the problem into parts:

Base Case: What is the smallest sub-problem? What is the trivial solution?

\,JL\Q/\ (Lt ,'(Aﬁﬂo) (‘é "V[/L(/\ S‘\'CP {adb

Recursive Step: How can | reduce my problem to an easier one?
O ¢(+=1 G How g 4o shp Poinh

Combining: How can | build my solution from recursive pieces?
s Mow <= T pas The Valve barK

. . |
Recursive Tree Height g‘)\ @
Y ©
What is the height of my tree T? /BS 7 ﬂ:,fz B Q

Base Case: What is the smallest sub-problem? What is the trivial solution?
T(ee I.§ lgﬁﬁ (1— ndac (C«Sf/ N cla \A/M) — L‘ﬁfﬁ\'* §§ O

Tlee 15 eagly (0 Nok ar) T helght s

Recursive Step: How can | reduce my problemat(g) an easier one?
/) /b ‘r'- - -|

Hf}ﬁl/\-\' (T 1.‘> h é> \ 77 TL a > TQ \)oo/)
4 & Heswr (Te=3) 5 Tay &~
3 & Helgt(T,
Combining: How can | build my solution from recursive pieces?

5 | + Mox @6:9\4\' (Tl,fﬂr > / hesght (TA.‘,,MB

: ™ — -\ C3 E?2
Recursive Sum /fé "Dy > CD
(euv/e
Given a list, sum all the items in the list using recursion

Base Case: What is the smallest sub-problem? What is the trivial solution?
JA% s} of lergth O — & bvn O

length 1 7 (b ke ore CHom

Recursive Step: How can | reduce my problem to an easier one?

P\ ok of leaghh A+l s a8 '’ tha o gt ot gt

t—/_

Combining: How can | build my solution from recursiveﬁieces?

L (
7 re*\‘f/\ >< + r/.'(u\fé(' SUM (|S'\

‘/% L’)(.'S\ oF -l , Yrans

Recursive Sum

Given a list, sum all the items in the list using recursion

18]4|2]6]|5]

Recursive findMax

Given a list, find the max item in the list using recursion

Base Case:

Recursive Step:

Combining:

Recursive findMax

Given a list, find the max item in the list using recursion

18]4|2]6]5]

Recursive Fibonacci @

Given a number n, return the nth Fibonacci number:

Fib(n) = Fib(n—1)+ Fib(n—2), n>1

Base Case:
Recursive Step:

Combining:

Recursive List Partitioning

Using all elements in a list, can we make two lists which have equal sums?

6]5[4]2]|7

(1)1 f1]1]1

12]3]3[3]1

Recursive List Partitioning

How would a computer solve this problem?

615|142

Recursive List Partitioning

How would a computer solve this problem? Compute every permutation!

6

5

4

2

6

6

514|2
412
2

514

Recursive List Partitioning

Writing code to attempt every possible permutation is tricky with loops.
But its a great example of recursion in action!

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Recursive List Partitioning

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Input: Left Right
615|412

Recursive Calls:
514 |2
514 |2

Recursive List Partitioning

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case:

Base Case: When my input list is empty, | have tried every permutation

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

[4, 3, 1] /[], [— ~

[3, 1] ([41, [1) ([1, [4])
24 A
[1] (I3, 41, [1) ([41, [3D) ([31, [4]) ([], [3, 41)

L
A / ()
(1L, 3, 4100 (3, 41, [31) (13, 31, da]) ([11,403, 4])

([3, 41, [1]) ([4], [1, 3]) (I31, [1, 4]) ([1, [1, 3, 4])

Recursive List Partitioning

Base Case: When my input list is empty, | have tried every permutation

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Combination Step:

Lab Recursion

Recursive List Partitioning is now extra credit on Fridays lab!

In preparation for Friday, consider how you might use recursion to solve:

Computing the factorial of a number

Counting the sum of all digits in a number

Checking if a string is a palindrome

