
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

February 21, 2024

Recursion

Exam 1 next week
Multiple Choice / Fill in the blank exam

Covers content through Monday February 19th

See website for details

Learning Objectives

Explore recursion in the context of loops

Introduce recursion in the context of trees

Practice recursion in the context of lists

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic

2) Rooted

1

2

3

4
5

6

Tree Terminology

HB

D

C

E

F

G IA

Node: The vertex of a tree

Edge: The [theoretical]
connecting path between nodes

Path: A list of the edges (or
nodes) traversed to go from node
start to node end

J

Tree Terminology
Parent: The precursor node to
the current node is the ‘parent’

Child: The nodes linked by the
current node are it’s ‘children’

Neighbor: Parent or child

Degree: The number of children
for a given node

HB

D

C

E

F

G IA

J

Tree Terminology
Root: The start of a tree (the only
node with no parent).

Leaf: The terminating nodes of a
tree (have no children)

Internal: A node with at least one
child

HB

D

C

E

F

G IA

J

Tree Terminology Practice

B

D
A

E

F

C

G

What is the longest path in the tree?

What is the neighbors of node B?

How many leaves does this tree have?

What is the largest degree in the tree?

Tree Terminology

b

d

g

h

j

c

e

i

f

a

Height: the length of the longest path from the root to a leaf

a

c

a

b

d

c

f

a

k

z

Tree Height Calculation Breakdown

A

B C

D E F G

B C

B

ED

A

C

GF

A

How does a program identify the height of a tree?

Tree Height Calculation Breakdown

A

B C

D E F G

B C

B

ED

A

C

GF

A

How does a program identify the height of a tree?

The height of my tree is 1 plus the height of my children!

To get H(A)

I need H(B) and H(C)

I need H(D) and H(E) and…
I need H(F) and H(G) and…

The process by which a function calls itself directly or indirectly is
called recursion.

Programming Toolbox: Recursion

Don’t panic — we’ve already used it before!

Linked List Recursion

L = None

A linked list is a list such that:L

or

L = listNode(val, Lnext)

class listNode:
 def __init__(self, val, next=None):
 self.val = val
 self.next = next

1
2
3
4
5

S

C

2

7

7

(Binary) Tree Recursion

X

AS

7

C

2

7

T = None

A binary tree is a tree such that:T

or

T = treeNode(val, TL, TR)

class treeNode:
 def __init__(self, val, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

1
2
3
4
5

Visualizing a binary tree

a = treeNode('a')
b = treeNode('b')
c = treeNode('c')
d = treeNode('d')
e = treeNode('e')
f = treeNode('f')
g = treeNode('g')

a.left = b
a.right= c
b.right = d
b.left = e
c.right = f
f.right = g

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class treeNode:
 def __init__(self, val, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

1
2
3
4
5

Visualizing a binary tree… recursively

e

cb

g

a

d f

a = treeNode('a')
b = treeNode('b')
c = treeNode('c')
d = treeNode('d')
e = treeNode('e')
f = treeNode('f')
g = treeNode('g')

a.left = b
a.right= c
b.right = d
b.left = e
c.right = f
f.right = g

class treeNode:
 def __init__(self, val, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5

a = treeNode('a', treeNode(‘b’,treeNode(‘e'),treeNode('d')),
treeNode(‘c', None, treeNode(‘f’, None, treeNode(‘g'))))

Programming Toolbox: Recursion
At its core, recursion is nothing more than another way of writing loops:

def recursiveFor(n):
 if n == 0:
 print(n)
 return

 recursiveFor(n-1)

 print(n)

1
2
3
4
5
6
7
8

for i in range(n+1):
 print(i)

1
2

def recursiveFor(n):
 if n == 0:
 print(n)
 return

 recursiveFor(n-1)

 print(n)

1
2
3
4
5
6
7
8

def recursiveFor(n):
 if n == 0:
 print(0)
 return

 print(n)

 recursiveFor(n-1)

1
2
3
4
5
6
7
8

recursiveFor(2)

recursiveFor(1)

recursiveFor(0)

Lets deep dive into whats actually happening here:

Programming Toolbox: Recursion

Programming Practice: Recursive Code

def recurse(i):
 if i == 0:
 return i
 return recurse(i-1)+i

1
2
3
4
5

What is the following code doing?

def recurse(inList):

 if len(inList)==0:
 return 0

 inList.pop()

 return recurse(inList)+1

1
2
3
4
5
6
7
8
9

@ line 4: return recurse(0)+1

Programming Toolbox: Recursion
Anything that can be solved with a loop can be solved with recursion

But sometimes its easier to code up a solution recursively

e

cb

g

a

d f

I can’t loop through a tree with for or while…

But I can loop through the tree using recursion!

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can I reduce my problem to an easier one?

Combining: How can I build my solution from recursive pieces?

When thinking recursively, break the problem into parts:

Programming Toolbox: Recursion

Recursive Tree Height

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can I reduce my problem to an easier one?

Combining: How can I build my solution from recursive pieces?

What is the height of my tree T?

Recursive Sum

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can I reduce my problem to an easier one?

Combining: How can I build my solution from recursive pieces?

Given a list, sum all the items in the list using recursion

Recursive Sum
Given a list, sum all the items in the list using recursion

8 4 2 6 5

Recursive findMax

Base Case:

Recursive Step:

Combining:

Given a list, find the max item in the list using recursion

Recursive findMax

8 4 2 6 5

Given a list, find the max item in the list using recursion

Recursive Fibonacci

, Fib(n) = Fib(n − 1) + Fib(n − 2) n > 1
Base Case:

Recursive Step:

Combining:

Given a number n, return the nth Fibonacci number:

Recursive List Partitioning

6 5 4 2 7

1 1 1 1 1

2 3 3 3 1

Using all elements in a list, can we make two lists which have equal sums?

Recursive List Partitioning

6 5 4 2

How would a computer solve this problem?

Recursive List Partitioning

6 5 4 2

How would a computer solve this problem?

6 5 4 2

6 5 4 2

6 5 4 2

6 2 5 4
…

Compute every permutation!

Recursive List Partitioning
Writing code to attempt every possible permutation is tricky with loops.

But its a great example of recursion in action!

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Recursive List Partitioning
Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

6 5 4 2

5 4 2 6

5 4 2 6

Input:

Recursive Calls:

Left Right

Recursive List Partitioning
Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case:

([], [])

([4], []) ([], [4])

([3, 4], []) ([4], [3])

[4, 3, 1]

[3, 1]

[1]

[]

([3], [4]) ([], [3, 4])

([1, 3, 4], [])

([3, 4], [1])

([1, 4], [3])

([4], [1, 3])

([1, 3], [4])

([3], [1, 4])

([1], [3, 4])

([], [1, 3, 4])

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case: When my input list is empty, I have tried every permutation

Recursive List Partitioning

Combination Step:

Recursive Step: Given list L, pop() L[0] to left and right and recurse on both

Base Case: When my input list is empty, I have tried every permutation

Lab Recursion
Recursive List Partitioning is now extra credit on Fridays lab!

In preparation for Friday, consider how you might use recursion to solve:

Computing the factorial of a number

Counting the sum of all digits in a number

Checking if a string is a palindrome

