
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

February 19, 2024

IEF and Multi-Dimensional Lists

Informal Early Feedback
An anonymous survey about the class

If 70% of class completes, everyone gets bonus points

Please provide constructive criticism and positive feedback

Learning Objectives

Review exam

Build a better understanding of course using IEF

Review core 2D list concepts necessary for mp_automata

If time: Practice Big O in the context of sorting algorithms!

CS 277
An intermediate CS class that must cover:

Algorithms Analysis and Optimization

Elementary Data Structures

An introductory programming class that covers:

Computational problem solving

Programming techniques

CS 277 is relatively new and still finding its ‘place’ in the curriculum

IEF Lecture Feedback
~22% feel they cannot actively participate in lecture — what would help?

IEF Lab Feedback

IEF Lab Feedback
Lets try regrouping as a class at the end of a lab section!

IEF Course Resource Feedback
Every question looks roughly like this — resource underutilized?

IEF Short Answers (Positives)
People find both labs and MPs to be great sources of learning

People enjoy having office hour coverage throughout the week

People find the class is improving their coding and problem solving

(Some) people think the class is great and shouldn’t be changed!

IEF Short Answers (Requests)
I wish there was more practice questions

I wish there was more in-class coding

Slow down the pace of the course

More extra credit assignments for advanced work

Requests for additional hints and help on assignments

IEF Short Answers (More Requests)
People want the annotated slides / annotated Python notebooks

More time for lab assignments

People want questions that look like the MPs in the lectures

IEF Short Answers (Negatives)
People don’t find the theory content relevant (prefer pure code)

People find the theory content great but dont like coding

People find some directions or lectures to be confusing

Concerns that the course is splitting focus too much

There is a steep learning curve in how to code

IEF Learning Objectives

Exam 0: Extra Credit Practice
We will go over two problems today (one from each set).

The other will be extra credit for one week.

The exam itself will be dropped — all other exams worth 100 pts (not 75)

PirateMap
Core concepts:

String Parsing

Data type Conversion

Conditionals

Sub-problems:

Store x, y coordinates starting at 0, 0

Convert string to modification of variable

Get difference between two numbers

Similar to:

lab_fundamentals (getTotalTime(), electricBill())

Practice exam (Combine two lists)

Major Confusion: No clear signal

CalendarTime
Core concepts:

String Parsing

Data type Casting

Conditionals

Sub-problems:

Convert string to day and month

Convert months to days

Get difference between two numbers

Similar to:

lab_fundamentals (getTotalTime(), electricBill())

Practice exam (Combine two lists)

Major Confusion: Converting month to days

roboBuilder
Core concepts:

1D List Indexing

Loops

Conditionals

Sub-problems:

Loop through recipe list

Calculate price for recipe

Update price lists

Similar to:

lab_fundamentals (checkSorted(), removeOdds())

mp_generate (Every list loop function in part 2)

Major Confusion: List indexing

Practice exam (Combine two lists)

combineLists
Core concepts:

1D List Indexing

Loops

Conditionals

Sub-problems:

Create string of appropriate format

Iterate through lists by tracking index values

Compute max of two integers

Similar to:

lab_fundamentals (checkSorted(), removeOdds())

mp_generate (Every generate function)

Major Confusion: List indexing

Practice exam (Combine two lists)

Python List Indexing (and slicing)

l = [5, 6, 7, 8]

List indexing
for i in range(len(l)):
 print(l[i])

i = 0
while(i < len(l)):
 print(l[i])
 i+=1

List slicing
print(l[1:2])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Lets remind ourselves what the following code is actually doing!

The Flood Fill Cellular Automata
For each cell in the matrix, spread water evenly between all neighbors

The key CA trick: Each square calculates simultaneously.

One cell perspective: Red’s water is entirely based on three squares

10 3

8

The Flood Fill Cellular Automata
For each cell in the matrix, spread water evenly between all neighbors

The key CA trick: Each square calculates simultaneously.

Matrix Perspective: Water will diffuse to all nearby cells.

10 3

8

3 5

3

2

4

2

2

The Flood Fill Cellular Automata

9 6

3 0

ff_update(matrix)

t=0

t=1

9 weight 6 weight

3 weight 0 weight

The Flood Fill Cellular Automata

9 6

3 0

ff_update(matrix)

t=0

t=1

+3 +3

+3

+2 +2

+2

+1

+1 +1

+0

+0 +0

9 weight 6 weight

3 weight 0 weight

The Flood Fill Cellular Automata

Conway’s Game of Life Rules

1. Any live cell with fewer than two live neighbors dies.

2. Any live cell with two or three live neighbors lives.

3. Any live cell with more than three live neighbors dies

4. Any dead cells with exactly three live neighbors becomes a live cell.

All cells in a matrix update at the same time according to the following:

The Game of Life Cellular Automata

1

1

1

1

gol_update(matrix)

t=0 t=1

The Game of Life Cellular Automata

1

1

1

1

gol_update(matrix)

1

1 1

t=0 t=1

1

2

3

2

Dead

Alive

Alive

Alive

Conway’s Game of Life

Programming Practice: 2D Lists
What happens if we append the same array twice?

1
2
3
4
5
6
7

def doubleAppend(inList):
 return [inList, inList]

x = doubleAppend([1, 2, 3])

x[0][0]=9

1 2 3

1 2 3 1 2 3

Programming Practice: 2D List copying
What happens when we run the following code?

import copy

orig = [[1,2,3], [4, 5, 6]]

copy = orig.copy()

orig[1][1]=9
copy[0][2]=7

print(orig)
print(copy)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Programming Practice: 2D List copying
The new code shows that the list stored at ‘copy’ is an actual copy!

import copy

orig = [[1,2,3], [4, 5, 6]]

copy = orig.copy()

orig[1][1]=9
copy[0][2]=7

print(orig)
print(copy)

copy.append([7, 8, 9])

print(orig)
print(copy)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

But it shares two of its three lists with original. Why?

Shallow vs Deep Copying

Orig

Shallow

Deep

1 2 3 4 5 10

4 9 68 2 7

A deep copy creates new instances of every object in the list

A shallow copy creates a new list but copies all values directly

Shallow vs Deep Copying
To protect yourself from accidental shallow copies, copy individual values!

l1 = [[1, 2], [3, 4]]

l2 = l1[:]

l3 = l1.copy()

l4 = []
for i in l1:
 l4.append(i)

l1[0][0]=9

print(l1, l2, l3, l4)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

l1 = [[1, 2], [3, 4]]

l2 = copy.deepcopy(l1)

l3 = []
for row in l1:
 tmp = []
 for val in row:
 tmp.append(val)
 l3.append(tmp)

l4 = np.array(l1)

l1[0][0]=9

print(l1, l2, l3, l4)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Don’t do this: Do this:

