
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

January 17, 2023

Introduction

Learning Objectives

Get to know each other through brief introductions

Discuss class logistics and expectations

Begin reviewing programming and Python fundamentals

Who am I? Brad Solomon

Teaching Assistant Professor, Computer Science

2233 Siebel Center for Computer Science

Email: bradsol@illinois.edu

Office Hours:

Thursdays, 11:00 - 12:00 PM

(Details are on the website)

… can also make an appointment directly

mailto:bradsol@illinois.edu

Who am I?

GTEx

Fast search of thousands of short read sequencing experiments. Brad Solomon and Carl Kingsford. Nature Biotech 2016

Final output

Global major-allele
reference

First-pass
alignment

Reads

Deferred  
alignments

Committed
alignments

Deferred
reads

Second-pass
alignment

Population references
Select best
alignments

Multi-genome  
alignmentsPopulation

specific 
alignments

Figure 3: Reference flow workflow. All reads are aligned to major-allele reference in
the first pass. High mapping quality alignments are “committed” and included in the
final output. Unaligned reads or reads with low mapping quality are “deferred” and re-
aligned against multiple population genomes in the second-pass. Second-pass alignments
are merged into the final output.

First pass In the first pass, we align all reads to an initial reference genome. For the par-
ticular reference-flow strategies evaluated here (MajorFlow, RandFlow, and RandFlow-
LD), we first aligned to the “global major” reference (Section 2.2). Reads that fail to align
or that align with low mapping quality are “forwarded” to a second pass, whereas reads
that align with high mapping quality are “committed” and are ultimately passed through
to the final output. We use a mapping-quality threshold because it is readily available –
reported by most popular read aligners – and because alignments with low MAPQ are
the most likely to benefit from the second alignment pass. After empirical experiments,
we selected a MAPQ threshold of 10 (Figure S2).

Second pass For reads forwarded to the second pass, we realign to a set of references
that include a wider range of genetic variation. In the methods evaluated here, we use five
second-pass references, each corresponding to a 1000 Genomes Project superpopulation:
AFR (African), AMR (admixed American), EAS (East Asian), EUR (European), and SAS
(South Asian). In the case of the MajorFlow method, the second-pass genomes are simply
the major-allele references corresponding to each of these superpopulations (Section 2.2).
In all cases, the second-pass references consist of a single haplotype.

Stochastic references In the RandFlow and RandFlow-LD strategies, second-pass refer-
ences are designed to represent “random individuals” from the super populations. For

11

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted March 19, 2020. . https://doi.org/10.1101/2020.03.03.975219doi: bioRxiv preprint

Reducing reference bias using multiple population reference genomes. Chen et al. Genome Biology 2021

Course Staff Introductions

Who are you?

https://piazza.com/illinois/spring2024/cs277

Feel free to introduce yourself on Piazza:

Introduce yourself when asking a question

Stop by my office hours at some point this semester!

Freely talk with each other on Discord**

https://piazza.com/illinois/spring2024/cs277

Navigate, organize, and run moderately complex Python projects

What will you get out of this class?

Navigate, organize, and run moderately complex Python projects

Why should you care?

TeamProject

UserInterface

Mobile

HTML

BackEnd

BigData

UserList

Algorithm

SecretSort

UserHash

#include <vector>

#include "util/coloredout.h"

#include "cs225/point.h"

using std::vector;
using std::string;
using std::ostream;
using std::cout;
using std::endl;

Taken from FastX-Toolkit (hannonlab.cshl.edu)

http://hannonlab.cshl.edu

Understand foundational data structures and algorithms

What will you get out of this class?

A

C

D

E

B
F

G

H

J
K

h(x)

0 3

21

4

Why should you care?

Understand foundational data structures and algorithms

CGAAAAA

GAAAAAC

AAAAAAC

AAAAACC

AAAAACTAAAAACA

GAAAAAGAAAAAGG

TAAAAAT

AAAAATT

GGAAACA

GAAACAC

AAAACCA

AAAAAAA

AAAAAAG

TGAAAACGAAAACT

AAAAAGA

AAAAGAG

AAAAAGC

AAAAGCC

AAAAGGC

GAAAATGAAAATGT

TAAAATT

AAAATTT

GTATCTA
TATCTAC

AAACACA

CGCCATT

GCCATTA

AAAACAT

AAACATG

AAACCAT

TGACGGT
GACGGTA

AAAACCG
AAACCGC

AGCCCGC

GCCCGCA

GAAACGC

AAACGCA

AGAACGTGAACGTT

AAAACTG

AAACTGC

AAAACTTAAACTTT

AAGGTAA

AGGTAAC

AAAGAGT

GAAAGCA

AAAGCAA

AAAGCAG

AAAGCCC

AGAAGCG

GAAGCGC

AAAGGCG

TGAAGTT

GAAGTTC

GAAGTTA

CAAATAA

AAATAAA

TAAATAC

AAATACT

CAGCGAT AGCGATG

AAAATCA

AAATCAC

AAATCAT

CTTAGGT

TTAGGTC

GGAAAGC

CAAATGC

AAATGCA

AAATGTC

AAATGTA

AAAATTA

AAATTAC

GGAATTT

GAATTTG

AAACAAA
AACAAAG

TAACAAC

AACAACC

AACAACG

AAGCGCG

AGCGCGT

AACACAG

AGAAAAA

GAAAAAA

AGACAGA

GACAGAT

CTAAATA

TGACAGT
GACAGTG

CTGGTAA

TGGTAAC
CAACATC

AACATCC

AACATGT

TGACATT
GACATTG

CGACCAA

GACCAAA

TGACCAC

GACCACA

GACCACC

CGACCAG

GACCAGG

CAACCAT

AACCATC

AACCATG

ATGGTGC

TGGTGCT

GTGGGAC

TGGGACG

CTGACGG

TGACGGG

TGACCTG
GACCTGG

CCCCGCC

CCCGCCA

AAAAAAT
AAAAATG

CTGCTGG

TGCTGGC

TGCTGGT

TGACGAG

GACGAGA

CAACGAT
AACGATG

GGACGCA GACGCAA

TGACGCG

GACGCGT

GGACGCT
GACGCTA

CAACGGG

AACGGGC

TAACGGT

AACGGTG

GAACGTA

AACGTAT

AAAACAG
AAACAGC

ACGGTTC

CGGTTCC

CGACTAC

GACTACT

CGCAATG
GCAATGG

CAGGTTG

AGGTTGC

GGACTCG
GACTCGC

TAACTGC
AACTGCC

GAACTGG

AACTGGT

TGACTTA

GACTTAG

GAACTTC

AACTTCT

AACTTTC

CGAGAAA
GAGAAAA

GAGAAAT

GCGTAAA
CGTAAAT

TGCAACG

GCAACGG

AACCGGT
ACCGGTC

ACCACCA

CCACCAT

CCACCAC

CACCGTA
ACCGTAT

AAGAGTG

TAAATTA

AAATTAA

AAGCAAT

TAGTGCG

AGTGCGG

AAGCAGA

CTGCGAT
TGCGATG

AAGCCCG

CAAGCCG

AAGCCGC

ACACAGA

CACAGAA

GTAACGG

CGAGCTG

GAGCTGG

AGAAAAT

GTTCTGA
TTCTGAT

CGAACGT
GAACGTC

AGAGGCA
GAGGCAG

AAGGCGA

AAAGGTA

GAAGGTT
AAGGTTT

TGAGTAA

GAGTAAA

AGAGTAC

GAGTACA

TGAACTG

ACCGCTG

CCGCTGA

CCTATAT
CTATATA

CGAGTGT
GAGTGTT

CGAGTTA
GAGTTAG

AAGTTCG

AATAAAA

CGAGGTA

GAGGTAA

AATACTT

ACATCAG

CATCAGT

TGATAGC

GATAGCA

GTCCTCT

TCCTCTC

CAATATAAATATAG
CAATATC

AATATCA

CAATATG
AATATGT

CGATATT

GATATTC

AATCACC

AAACAGT
AACAGTT

GAATCCA

AATCCAC

CAATCCG
AATCCGC

TTCCTGC
TCCTGCG

CGATCGC

GATCGCC

ACGTATT
CGTATTT

GAATCTA

AATCTAC

CAAAGCC

TAATGAA

AATGAAA

TGCGGGT

GCGGGTT

GCGGGTG

TAATGAG
AATGAGA

CGATGAT

GATGATT

AATGCAG

CGATGCC

GATGCCG

CACACCA
ACACCAT

CTTTTTT

TTTTTTT

TGATGGC

GATGGCT

ACGGGGC
CGGGGCT

AATGTCG

AATTAAA

AATTACA

GGCGCTG
GCGCTGT

GAATTCC
AATTCCG

AAATTCG
AATTCGG

CAAAGGC
AAAGGCA

TGATTGA

GATTGAA

TGATTTA
GATTTAG

GGATTTC

GATTTCC

AATTTGC

AAATTTT

AATTTTA

GACAAAA
ACAAAAG

GGCAAAT

GCAAATG

TACAACA

ACAACAG

ACAACCA

GGCAAGC

GCAAGCC

ATGTCCT

TGTCCTG

GGCAATA

GCAATAT

AGCAATG

GCAATGC

CACAATT

ACAATTG

TACACAA ACACAAC

TCGTCGA

CGTCGAC

AACACAT
ACACATT

AGCACCA

GCACCAC

GCACCAG

TAGCGAG
AGCGAGA

CGCACCG
GCACCGA

CGCACCT

GCACCTG

GACACGC
ACACGCC

CACCGAA
ACCGAAA

GTCGACC
TCGACCA

ACAGAAA

CACAGAC

ACAGACA

TACAGAG

ACAGAGT

ACAGATA

AGCAGCG
GCAGCGT

CGCAGCT
GCAGCTG

TACAGGA

ACAGGAA

GGCAGGG

GCAGGGG

GCAGGGC

CACAGGT

ACAGGTA

TGCAGTA
GCAGTAC

ACAGTGC

GACATAC
ACATACA

GGCATAG
GCATAGC

TACATCA

ACATCCA

CCGTTAT

CGTTATC

CACATGA
ACATGAT

GCTATAT
CTATATG

TGCATGG

GCATGGC

ACATGTC

CGCATTA

GCATTAG

CGCATTC

GCATTCC

GCATTCG

GGCATTG
GCATTGC

TGAATCC

CGCCAAA

GCCAAAA

CACCAAC

ACCAACC

AACCAAT

ACCAATA

TACCACA

ACCACAG

CACCACC

TAAAAAC
CACCACT

ACCACTA

TACCAGC
ACCAGCA

ACCAGGA

CGAATCT

ACCATCT

ACCATGC

AACCATT

ACCATTA

TACCCAA

ACCCAAT

TACGGCC
ACGGCCG

CGCCCAG

GCCCAGC

TGCCCCC

GCCCCCA

GCCCCCG

GAAATGC

CACCCGC
ACCCGCC

ACCCGCA

TGCCCGG

GCCCGGA

AGCGATT
GCGATTA

CGTCGAA
GTCGAAT

CGCCCTG
GCCCTGC

CAGTGCC

AGTGCCC

TGCCGAA

GCCGAAC

TACCGAG
ACCGAGG

GGAATGT
GAATGTG

AGCCGCA

GCCGCAT

CGCCGCC

GCCGCCC

GCCGCCG

ACGGGCA

CGATCCG

GATCCGG

GTCAGCG

TCAGCGA

GGCCGGC

GCCGGCG

AGCCGGG

GCCGGGA

TGCCGGT

GCCGGTA

GCCGGTC

CGCCGTA

GCCGTAT

TACCGTC
ACCGTCA

TGCCGTG

GCCGTGA

GCCGTGG

TACCGTT

ACCGTTA

ACCGTTG

TTAATTG
TAATTGA

TACCTCG

ACCTCGA

CAGTGGC

AGTGGCA

CACCTGA

ACCTGAC

ATCGCCA

TCGCCAT

TGCCTGG
GCCTGGT

GGCGCGT
GCGCGTT

CAGCGTG
AGCGTGT

CACCTTT
ACCTTTA

GCGGGTC
CGGGTCG

TCACAAT

TCGTGGT

CGTGGTC

CGTGGTT

CCCGCCG

CCGCCGT

TAAAAAA

CACAACA

GGCGAGA

GCGAGAA

GGCGAGC

GCGAGCT

AACGAGG

ACGAGGT

TGCGAGT GCGAGTG

AGCGATA
GCGATAA

TAGCGCG

GCGATGA

GCGATGC

ACGGTGC

CGGTGCG

ACGCAAC

AGCGCAC

GCGCACA

AACGCAT

ACGCATT

CAAAAGC
AAAAGCA

CCGTGTG
CGTGTGG

CGCGCCG

GCGCCGA

TACGCGC

ACGCGCC

TTACACA

AACGCGT
ACGCGTG

AACGCTG

ACGCTGC

TACGGAG
ACGGAGT

ACGCGTA

TGCGGCA

GCGGCAA

GCGGCAG

GGCGGCC
GCGGCCT

GGCGGCG
GCGGCGT

GGCGGGA
GCGGGAC

TGCGGGC

GCGGGCT

TACACAG
ACACAGT

TTTTTTC

TTTTTCG

GGCGGTA

GCGGTAC

AGCGGTC
GCGGTCA

AACGGTT

ACGGTTA

GCACAGA

TGCGCTG

GCGCTGA

CATTACC

ATTACCT

ATTACCA

GGCGTGT

GCGTGTT

AACGTTA

ACGTTAC

GTACAGG

AACGTTT
ACGTTTT

CACTAAA

ACTAAAT

AAGTTTC
AGTTTCG

GAGTTCG

AGTTCGG

TGAAAAA

ACTACTC

CTCTGCC

TCTGCCC

AGCTATG
GCTATGA

TTACATC
TACATCG

CCGTTGA

CGTTGAT

TACTCCA
ACTCCAC

TACTGAA
ACTGAAA

TACTCCG

ACTCCGC

AACTCCT
ACTCCTG

ACTCGCC

TGCAGAA

GCAGAAC

CAACATT
AACATTC

AGCTGGT

GCTGGTG

TGCTGAA

GCTGAAT

GGCTGAC

GCTGACG

GCTGACC

GACTGAG
ACTGAGG

CGCTGAT

GCTGATT

GCTGATC

GACTGCA

ACTGCAA

CACTGCC

ACTGCCG

ACTGCCT

CGCTGCG

GCTGCGC

GCTGCGG

TTACCAC

TACCACC

CGCTGGC

GCTGGCA

ACTGGTT

TCCGCCC
CCGCCCC

AACACCA
ACACCAC

AGCTGTT
GCTGTTG

GTGCTGG

GACGGGA

ACGGGAC

ACTTAGG

CACCATC

CACCATT

CAGTTTG

AGTTTGT AGTTTGC

ACTTCTG

TCGCCGT

ACAGCGA

CAGAGTG AGAGTGT

TGCTTTA

GCTTTAC

ACTTTCG

TAAAACA

GGCTTTT

GCTTTTT

ATAAAAC

ATAAAAA

GGGAAAT
GGAAATA

CCACCCG

CAGAACG

GGGAAGC
GGAAGCA

AGGAAGG
GGAAGGG

CAAAATC

AGGAATT

CAGACAG

AGTAAAT

GTAAATT

ACCAAAG

TGCGGTG

GCGGTGC

GGGACGC

GGACGCG

GGGACTA
GGACTAG

GGGACTC

GGAACCA
GAACCAC

TTACCGT

CGCGTAC
GCGTACA

AGTAACT
GTAACTT

CAGAGTA

ATGCCAA
TGCCAAG

TTACCTC

CAGATAA

AGATAAA

AGATAAT

CGGATAG

GGATAGC

TTACCTG

TACCTGC

CTGACGC

TGGATTA GGATTAA

GGGATTC
GGATTCC

TGCCCGC

GCCCGCG

GGGATTT

TTAAAATTAAAATA

CGGCAAG

GGGCAAT

TGGCACAGGCACAA

TAGCACC

TGGCACG
GGCACGA

TAGCAGC

AGCAGCT

AGGCAGG

TGGCAGT
GGCAGTG

AGGCATA

GGCATAC

TAGCATC AGCATCA

CGGCCAA

GGCCAAA

TGGCCAC

GGCCACC

GTGGTCA
TGGTCAC

GAGCCGA
AGCCGAT

TGGCCGG

CTGAGTG
TGAGTGC

CGCGTGG

GCGTGGT

CGGCCTG
GGCCTGT

AGGCGAG

TAGCGAT
TAGCGCA

CAGCGCG

CACCGCC
ACCGCCA

TGGCGGC

TTATCAC
TATCACC

CGGCGGT

CGTACAG

CGGCGTG

TGCTGAT

GCTGATG

GCCCGAA
CCCGAAT

TTCGCTG
TCGCTGG

GGGCTCT
GGCTCTT

GGGCTGA

ACCTGGT
CCTGGTA

TTTACCC

TTACCCA

CAGGAAA

AGGAAAC

ACCCCGA
CCCCGAA

CAACGGT

TCTACCG

CTACCGT

CGGGACT

CAGGATA
AGGATAG

CAGGATG

AGGATGC

CGGGATT

CGGGCAA

GGGGCAG

GGGCAGG

GGGCAGT

TAGGCAT

CGGGCCT
GGGCCTT

CGGGCTG

CGGGCTT

GGGCTTT

CACCGCT

AGGGGCA

GGGGGCC
GGGGCCT

CAGGGGC

CCTATTT
CTATTTT

CTACTCC

CAGGTAA

GAGGTAC
AGGTACA

GGGGTAG
GGGTAGC

TAGGTCA

AGGTCAC

TGGGTCA

GGGTCAT

GGGTCAG

GGGGTGA
GGGTGAC

CAGGTGG

AGGTGGC

TATACTT

ATACTTT

TGGGTTA
GGGTTAT

CAGGTTC
AGGTTCT

CGGGTTG

GGGTTGC

GGTAACG

GGTAACA

GGTAACC

GAGTAAG
AGTAAGT

CGGTAAT

GGTAATG

AGTACAC

AGTACAT

TTGAGGC
TGAGGCA

TGGTAGC

GGTAGCG

GGTCACT

GGTCACC

CGGTCAG

GGTCAGG

GGTCATT

TGACTGC

CGGTCGA

GGTCGAA

TGGTCGT
GGTCGTT

ATCGATC

TCGATCC

CCAGGAA

GCAGCTT

GTAGCGA

GGTGCGG

GGTGCTG

TAACCAA

GGTGGCC

CAGTGGG

AGTGGGT

TGGTGGT

GGTGGTT

GAGTGTC

AGTGTCT

CAGTGTG
AGTGTGG

AGTGTTG

TGGTTAC

GGTTACC

TCACCAC
CACCACA

GGTTCCG

TGGTTCT

GGTTCTG

GGTTGCC

GGGTTGT
GGTTGTC

TGGTTTC

GGTTTCA

CCAACCA

AGCAGGA
GCAGGAA

GATAAAA

CATAAAC
ATAAACG

ATTGAAA

CTCCGCT

TCCGCTG

GATAACA
ATAACAA

AATAACC
ATAACCA

GTAACGA

ATAGAAC

TAGAACA

GTAATGA

AATACAA
ATACAAC

GTACACA

CCATTAC

GGTACAT

GTACATC

GCCTGTG
CCTGTGT

AATAGAA

ATAGCAT

ATAGCAG

CATAGCG

ATAGCGC

TATAGGCATAGGCA

GATAGTA
ATAGTAT

CGCAACG

CTGCCGG

AGTATAC
GTATACA

ATATAGG

ACGTCAC
CGTCACT

ATATCAG

CTCTCTG

TCTCTGC

TATATCG
ATATCGG

GTAACAA

ATATGTC

ATATTCT

GATATTG

ATATTGC

GTATTTT

ACTGCAC
CTGCACC

CATCAAC

ATCAACG

CAAAGGT

GGTCACA GTCACAA

ATCACCA

TTCTGAC

TCTGACG

TCTGACT

GTCAGGA

ATCAGTG

ATCAGTT

TGCCGAG
GCCGAGA

GTCATTA

ATCCACC

ATCCACG

CCACCGT

CACCGTC

CATCCAT

ATCCATG

AGCTTTA

GATCCCG
ATCCCGA

ACCGTCC

ATCCGGT

CGTTCCG
GTTCCGG

CGTCCTC

GTCCTGC

CGCTGCC
GCTGCCC

GTCGAAA

TCACCAT

TATCGAT

CCAGCAC
CAGCACC

CCGTCCT

TGTCGGG
GTCGGGG

AACTGCT

ACTGCTG

GATCGTA
ATCGTAT

TTCACCA

TCACCAA

CGTATTC
GTATTCC

ATCTACC

CGTATTG

GTATTGC

GCTGGCG

TGTCTGA

GTCTGAT

ATCAGGT
TCAGGTA

CATCTGG

ATCTGGT

CATCTGT
ATCTGTG

TGTCTTA
GTCTTAG

TTTTCTG

TTTCTGC

CTTTCGT

ATGAAAA

ATGAAAG

GTTATGG
TTATGGA

GTGCTGA
TGCTGAC

CGTGAGT

GTGAGTA

GGTGATG
GTGATGG

ATGATTG

ATGCAGA

TGTCAAT
GTCAATC

AATGCCA

ATGCCAG

GTGCCCG

ATGCCGA

CATGCGA ATGCGAG

GTGCGGG

CATCACC

AATGGAA
ATGGAAA

TGTGGAT GTGGATT

GTGGCAA

GTGGCCA

CGTGGCG

GTGGCGA

ATGGCTG

GTGGGTC
CATGGTG

GTGGTTC

GTCACTA

ACGGGTT

CATGTCC

ATGTCGA

TATGTCT

ATGTCTC

CACTCCG

GGGATTA
GGATTAC

TGTGTGG

GTGTGGA

CGTGTTA

GTGTTAG

GTGTTGA

GATTAAA
ATTAAAA

ATTACAG

CGTTACC

GTTACCG

TATTACG
ATTACGG

CATTACT
ATTACTA

TGTTAGA

GTTAGAA

CATTAGC

ATTAGCA

ATTAGCG

AGCTTCT

GCTTCTG

AGTTATA
GTTATAG

GTTATCG

CATTATG

ATTATGG

CGGTACA

CATTCCG

ATTCCGG

CCAGGCA

CAGGCAG

GTTCGGC

GGTTCTC
GTTCTCG

TATTCTG

ATTCTGG

GTTTCGC
TTTCGCT

TGTTGAA

GTTGAAG

TATTGACATTGACT

GTTGATA

GTTGCCG

TATTGCG

ATTGCGG

TATTGCT

ATTGCTG

TACTTTA
ACTTTAA

TTGATAT

TCCGGTC

CCGGTCG

TTACCCG
TACCCGA

AGGCTGA

TGTTTAC
GTTTACG

GTTTCAC

ATTTCCG

AGTTTGA
GTTTGAT

GATTTGCATTTGCC

GTTTGTT

ATTTTAT

CGTTTTC

GTTTTCT

TTTGCCG

TTGCCGA

TTGCCGT

TATTTTT

ATTTTTG

TTAAAAA

CCAAAAT

ACAAAGC

CCAAAGG

CCAAATA

TGGAAAG

CAACAGG

ACAACAT

TTAACCA

TAACGAG

TAACGAC

TCAACGC

CAACGCT

CAACGCC

ACAACGT
CAACGTT

AATCCGG

CGCCGAT

GCCGATT

TTCCGCT

CGAGTAA

GACTTCT

CCGAACT

CGAACTT

GCGCGTG

TATCAGC

ATCAGCG

GCAATAC
CAATACG

TAACCGT
AACCGTG

CCAATAT

AGCTTTT

GCTTTTC

CAATGCC

TTAATTA
TAATTAA

CCGAAGG
CGAAGGT

CAATTGA

TCACAAC
CACAACG

GCACAAT

TTACAGA

TACAGAT

CAGAATA
AGAATAC

CCACAGG

TCAGTCT
CAGTCTG

GTACATA
TACATAA

CCACATG

CACATGG

TCGAATC

ACACCAG
CACCAGC

TGTCGAT

GTCGATC

CCTGCCG

CTGCCGT

GCAGTGC

TTACCGC
TACCGCT

GCAGTGG

GGATGCT

GATGCTT

TAGCGGT

AATTGAA

TTACGCG

TATTGAT
ATTGATG

TTACGGT
TACGGTG

TTACGTC
TACGTCG

TCACTAA

CACTAAC

TGAAACG

GCACTAT
CACTATT

TACTCCC

GTTCCGA

TCACTGC

CACTGCA

ATACTGG
TACTGGA

CAGAAAA

TTAGAAG

TAGAAGC

AGTCGGT
GTCGGTC

CGATGGC
GATGGCC

ATAGCAA
TAGCAAC

TTAGCAC

CCAGCCA
CAGCCAA

CCAGCCG

CAGCCGG

GCGACGC
CGACGCC

TTAGCGG

TCGAAAA

GTGACGG

CAGCTTC

CAGGAAT

TCAGGAT

CAGGATC

CACATCA

CATTCTG

ATTCTGA

ACGACTA

ATATTAC
TATTACA

GCAGGTG

GCAGGTT

GCAGTGA
CAGTGAG

CAGTGCG

TCAGTGG

ACAGTTG
CAGTTGA

TCAGTTT

ATATAAA
TATAAAA

CGATTCT
GATTCTA

TGGCTGG

GGCTGGT

TGTCTCT

GTCTCTG

GCATCAA

TTCTGCG

TTATCGA

TGATATT

GTTCTGG

TTCTGGG

CCATCTG

TCGAGCC
CGAGCCG

CCATGAA

CATGAAA

CATGAAC

ACATGAC
CATGACA

ACATGCA
CATGCAG

CCATGCG

CCATCAC

CATGGCA

CATGGCT

ACATGGT

GCATCAG

ATTCCGC
TTCCGCC

CCCAACG
CCAACGT

TCATTAC

CCATTAG

CCATTAT

CATTATC

GGTGCCG
GTGCCGA

TCATTCT

TTATTGA
CGTCTTT

GTCTTTT

ATGAAAC

CCCAAAT

TCTGAAC

CTGAACT

GCGAGTACCCAATA
CCAATAG

GTCAATT
TCAATTA

ACCACAT

TCACCAG

TCCACCC

CCACCCT

GCCACCG

GCCTTTT
CCTTTTT

ACCACGA

CCACGAA

CCACGAC

CCATGGT

TTCACTG

TCTGACC
CTGACCG

ACCAGAG
CCAGAGG

CCCAGCC

GACATCA

GCCAGGC

TTGACTT

TTGACTC

TTGACTG

GTCATAA
TCATAAC

ACCATCA

CCATCAG

TCCATGA

CTCATGG
TCATGGT

TTCATTC

CTCGCCG

TCGCCGC

GCCCAAA

AATGAGT
ATGAGTG

GCCCACG
CCCACGC

CTTCTGA

CTTCTGG

CAACGCA
AACGCAG

ATGGCAT

CCCCCAC

CCCCCGC

TGGCAAA

TATCCAT
ATCCATC

ATGATGG

AATGCCC

TTCGGCG

TCGGCGG

TTCCGAC

TCCGACT

TCCGACA

CCCGCAC

CCCGCGC

GGCATCA

CCCGGAT

CCCGGAC

TTCCGGC

TCCGGCT

TTCCGTC
TCCGTCG

TTATGGC

TATGGCC

TCCTGCA

AGTCACT

TTTGCCC

TTGCCCA
CCGAACG

TTCGAAG
TCGAAGC

CTCGAAT

TTCGACC

CCGACTA

GCCGATA

CCGATAT

TCGATCG

GTTGCGG
TTGCGGA

CCGATTG

CCGCACC

CCGCATT

CCGCCAA

CCGCCCA

CCGCCGC

CTGCGCT

AGGCACA

GCCGCGG
CCGCGGT

CGCATGG
GCATGGT

CCCCCGA
CCCCGAC

TTGCGGC

CCGCTGG

CCGCTGC

CCGGATA

CCGGCGT

CCGGCTG

CCGGGAT

CCGGTAA

CCGTATT

TTGCTGA

TTCGTCG

GGACACA
GACACAC

CCGTGAG

CCGTGGC

GCCTGTT

GGCAGGT

TGCCGAT

ATGCTTT

TGGCAAG
GGCAAGA

ACCTGCC

TCTGCGG

CTGCGGG

TGGCATC GGCATCC

GCCTCAA
CCTCAAC

GCTGACA

CTGACAG

TACAAAA
ACAAAAC

ACCTCCA
CCTCCAA

ATCTCCG

TCTCCGC

CCTCGAA

ACTGGCA

CTGGCAG

CCTCTCT

TCTCTGT

ATGGCCG

TTCTGAA

CCTGACA

TCTGATA

CCTGCAT

TTCTGGA

TCTGGAA

AAATTTA
AATTTAT

TCTGGGA

TCTGGTA

CTCTGTG

TCTGTGT

CCTGTTT

CTAAGGT
TAAGGTA

TGATTTG

TTGAAAA

TGCCCAA

GGATTTT
GATTTTT

GTGACGA

GTGCCCC

GCGCAGT
CGCAGTG

CTGCCCG

TGAACTT

TTGAAGA
TGAAGAA

GCTGGTA

TTGAAGT

CTGAATC

GCCAAAT
CCAAATT

TCGACCG
CGACCGA

CTGACGA
TGACGAC

CTGGTTA

CTGACTG

AGCGCCA
GCGCCAT

GGCAACG

CTGAGGC

TGAGGCG

AATGTAG
ATGTAGG

ATGATAA
TGATAAA

CTCAAAT
TCAAATA

CTGATAG

CTGATGG

CCGATGT
CGATGTT

GAGCCGG
AGCCGGT

CTGATTT

CGCACAG

TTGCGAC
TGCGACA

GTGTCTG

ACCAAAC
CCAAACG

TGGCGAG

CTGCATG

TGCCAGG

CGCCCAA

CTGCCCC

TGCCGGG

CCGCCTA
CGCCTAA

GCACAAA

CCGCGAT
CGCGATG

GCTGGTT

CTGCGGT

CCGCTCA
CGCTCAG

ATTGTTG

TTGTTGG

ACGCTGA

CTGGAAA

TTGCGGT
TGCGGTA

ACGACCA
CGACCAC

CTGGCAC

CGGCTGA

CTGGCCC
TGGCCCC

ACGGCGC
CGGCGCG

GTTACCT

ACGGGAG
CGGGAGT

ACGCCGC
CGCCGCA

TTGGGGC

TGGGGCA

GCGGGTA
CGGGTAA

CTGGTAG

AATTAGC

ACCGATC
CCGATCC

CGGTGCT

CTGGTGG

TGGTGGC

ACGGTTG
CGGTTGA

CTGGTTT

GCGGCTG

GTTCGAA
TTCGAAA

ACGTAAT
CGTAATT

CTGGCGA
TGGCGAC

GGCAGAG
GCAGAGG

GCCAAAG

CGCAGAT
GCAGATT

CCACTAG

CCACTAT

CAGCGGG
AGCGGGC

TTTTATT
TTTATTG

GTAACGT
TAACGTA

TGTCTGC

GCGTCTT
CGTCTTA

CAGCGTC
AGCGTCC

CCGTGAT
CGTGATC

TGGAAGC
GGAAGCG

TTGTGCC
TGTGCCG

TTTCACT

AGTGAAA
GTGAAAA

CTGTGTG

AATATTG
ATATTGG

CTGCAAC

TGCAACT

TGTTGAC

TGTTGGG

CTGTTTA

TTGTTTC
TGTTTCG

CTGTTTG
TGTTTGG

GTGGAAA
TGGAAAA

GGGTCGA
GGTCGAC

TTTAACC

TACAGGT

TTGTTAG

TGCGCCG

TTTACGC

AGTGCTG

CCGGTTG

TGGCCGC
GGCCGCC

TTTCGTC

TTAGCAA

TTAGCGT

TAACCAC
AACCACG

GTTAGTA
TTAGTAG

CTTATAG
TTATAGC

TGTTGGC
GTTGGCG

TTATCGG

GTTATGA
TTATGAA

TGCATCC
GCATCCA

ACTCAAC
CTCAACA

TTTCACA
TTCACAG

GAGGCGT

CCTCAGA
CTCAGAT

TCGGATA

CTGACCA

TTTCATT

GTTCCAA
TTCCAAC

CGTAGCG

ACTCCCC
CTCCCCG

GTCATGC
TCATGCA

TTTCCGC

TTTCCTC
TTCCTCG

TTTTGCC

TTTCGAC

GCCACCT

CTTCGGA
TTCGGAC

GTTCGGG
TTCGGGC

CAACTTT
AACTTTA

GTCAAAA
TCAAAAA

GTCATTC

AAAACAA
AAACAAT

GTTGGGG

CCTGAAC

CTGATGT

AGTGCGC

CTTGCGA
TTGCGAG

GGCGAGT

CTGGCGG

ACTGGAC
CTGGACT

GCTGGAT
CTGGATT

ACTTTAC
CTTTACC

CTGGGAC

TTGGGGT

AACCAGC
ACCAGCT

AATTTCA
ATTTCAG

ATTGTGG
TTGTGGC

TTTGTTG

TTGTTGA

CTTTAAA
TTTAAAC

CTTTAAC

ACTTAAG
CTTAAGT

CCTAGGT
CTAGGTC

CTTTTCT
TTTTCTT

GGGACCC
GGACCCG

AACAATT
ACAATTA

TTTTCAT

TTTTCGA

TTTTCGG
TTTCGGC

AATTTGT
ATTTGTC

TTTTGCA
TTTGCAG

TGCCCAC
GCCCACA

GCTTGGC
CTTGGCA

CCTTCTG

CCTTTAG
CTTTAGC

TTTTATC

TTTTATG

CTTTTCA

TCAGTGC

TTTTTGC

TTTTTGG

CTTTTTC

Is it fast to build? Slow?
Is it small? Big?

Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgttcagataatgc 217
 ||||||||||||||||||||||||||||| | | | || ||||||||||||||
Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgttcagataatgc 539

Justify appropriate algorithms for data science problems

Decompose problem into supporting data structures

Analyze efficiency of implementation choices

What will you get out of this class?

Why should you care?

Justify appropriate algorithms for data science problems

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Find all overlap: GACATA vs ATAGAC

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

>2.5 years

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

>2 days

NIH
cluster

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

19
mins

single
CPU

SR
A-

BL
AS
T

The prerequisite requirements for CS 277 are very different

CS 225 vs CS 277

The learning goals and content are also very different.

CS 225 is necessary to enroll in many upper-level CS classes

Course Webpage

https://courses.grainger.illinois.edu/cs277/sp2024/

All course information and links can be found here!

Assignment links and descriptions

Piazza links and Office Hours

Syllabus

Course Schedule and Lecture Material

https://courses.grainger.illinois.edu/cs277/sp2024/

In-Lecture Course Expectations

Attendance is encouraged but not mandatory

Ask questions!

Participate in class exercises / labs

Out-of-lecture Course Expectations

Weekly assessments

Lab assignments are published Friday and due Monday @ 11:59 PM

Mini-projects deadlines are published with each project (~3 weeks)

Watch recorded lectures (if you missed in-person)

All lectures are published on Mediaspace:

https://mediaspace.illinois.edu/channel/CS+277/225216063

https://mediaspace.illinois.edu/channel/CS+277/225216063

Grading

Category Contribution Notes

Mini-Projects 300 75 points
each

Labs 300 25 points
each

Exams 300 75 points
each

Final 100 + 1 retake
exam

Points Grade

900 A-

800 B-

700 C-

600 D-

F

Mental Health

McKinley Health Center: 217-333-2700

1109 South Lincoln Avenue, Urbana, Illinois 61801

This class should be low-stress, medium work-load.

UIUC offers a variety of confidential services:

Counseling Center: 217-333-3704

610 East John Street Champaign, IL 61820

Diversity, Equity, and Inclusion

Course CAs

Faculty

Campus Belonging Office (Link)

“If you witness or experience racism, discrimination, micro-aggressions,
or other offensive behavior, you are encouraged to bring this to the
attention of…”

The Office of Student Conflict Resolution (Link)

CS CARES (Link)

https://diversity.illinois.edu/diversity-campus-culture/belonging-resources/
http://conflictresolution.illinois.edu/policies/report-violation/
https://cs.illinois.edu/about/cs-cares

Class structure is under development!

Class size tripled from last iteration, course description changing

Frequent assessment will allow adjustments as needed

Learning Objective: Programming
Navigate, organize, and run moderately complex Python projects

Three sub-goals to be a better programmer:

1) Building up your ‘programming toolbox’

2) Thinking carefully about a problem

3) Choosing the right tool for the job

Programming Toolbox: Variables
What is a variable in Python?

a="3"
b=3
c=3.0
d=True

print(a + b)

print("3 + 3”)

print(b + c)

print(c + d)

print(d)

print(d - d)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

What information is necessary to define a variable?

Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 1212

Ref Count 1

X = 1212 1
2
3
4
5
6
7
8
9

10

Var Name X

Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 1212

Ref Count 2

X = 1212

Y = X

1
2
3
4
5
6
7
8
9

10

Var Name X

Var Name Y

Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 1212

Ref Count 1

X = 1212

Y = X

Y = 9000

1
2
3
4
5
6
7
8
9

10

Var Name X

Var Name Y Type integer

Value 9000

Ref Count 1

Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 12

Ref Count 1

X = 1212

Y = X

Y = 9000

X = 12

1
2
3
4
5
6
7
8
9

10

Var Name X

Var Name Y Type integer

Value 9000

Ref Count 1

Type integer

Value 1212

Ref Count 0

Programming Choice: Data Type
Python has many built-in data types:

https://www.w3schools.com/python/python_datatypes.asp

string = "Hello World”

intv = 1

floatv = 1.0

listv = [1, 2.0, “:)"]

dictionary = {"Key" : “Value"}

boolean = True

setv = {1, 3, 5, 7, 9}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Programming Choice: Data Type
Which of the following will result in a variable x having the value 0.5?

** A **
x = 1 / 2

** B **
0.5

** C **
y = 1.0
x = y / 2

** D **
x == 0.5

** E **
2*x = 1

** F **
0.5 = x

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Of the valid solutions, which do we like the most?

Programming Choice: Data Type
Some objects are mutable — we can change their values after creation

Type list

Value …

Ref Count 1

X = [1,2,3,4,5]

print(id(x))

X[2]=0

print(id(x))

print(x)

1
2
3
4
5
6
7
8
9

10

Var Name X

Programming Choice: Data Type
Some objects are immutable — you have to make a new object

Type String

Value 12345

Ref Count 1

X = "12345"

print(id(x))

X[2]=0

print(id(x))

print(x)

1
2
3
4
5
6
7
8
9

10

Var Name X

Why do we care?
Imagine you have two datasets:

Dataset 1 is very large but fixed in size.

Dataset 2 starts off small but grows to an unknown size.

Would you rather have a mutable or immutable variable?

What do we care about when writing code?

What do we care about when writing code?

Tying it all back together…

For most simple programs or small datasets, efficiency doesn’t really matter

But this will not always be true — especially in the data sciences!

def type1(strList):
 out = ''
 for s in strList:
 out += s
 return out

def type2(strList):
 return ''.join(strList)

1
2
3
4
5
6
7
8
9

10

Programming Toolbox: Conditionals
Conditional statements control what blocks of code get run

num = 20

if num in [0,1,2,3,4]:
 print("Top 5!”)

elif num > 10:
 print("num too large!”)

elif num > 15:
 print("will this ever get called?”)

else:
 print(num)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Programming Toolbox: Conditionals
Whats the difference?

num = 2

if num >= 1:
 print("A")
elif num >= 2:
 print("B")
elif num >= 3:
 print("C")

1
2
3
4
5
6
7
8

num = 2

if num >= 1:
 print("D")
if num >= 2:
 print("E")
if num >= 3:
 print("F")

1
2
3
4
5
6
7
8

Programming Toolbox: Loops
We are often tasked with processing every item in a dataset.

for i in range(3):
 print(i)

count = 0
while(count <= 2):
 print(count)
 count+=1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

We use loops to simplify our code structure.

For Loop:

While Loop:

Programming Toolbox: Loops

count = 0

while(True):
 if count % 2 == 0:
 count+=1
 else:
 pass

 if count > 10:
 break
 else:
 count+=1
 continue
 count+=1
 print('count: {}'.format(count))

print('count: {}'.format(count))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

There are a number of useful keywords for writing loops

Pass:

Break:

Continue:

What does this code print?

count = 0

while(True):
 if count % 2 == 0:
 count+=1
 else:
 pass

 if count > 10:
 break
 else:
 count+=1
 continue
 count+=1
 print('count: {}'.format(count))

print('count: {}'.format(count))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Programming Toolbox: Functions
Functions are the building blocks of programming

Input Output

def type1(strList):
 out = ''
 for s in strList:
 out += s
 return out

def type2(strList):
 return ''.join(strList)

1
2
3
4
5
6
7
8
9

10

def mystery(inValue):
 return inValue + inValue

1
2
3
4
5
6
7
8
9

10

Programming Toolbox: Functions
You should always document the intended input and output.

INPUT:
A string (checkin)
A string (checkout)
OUTPUT:
A float storing the number of minutes between checkin and checkout time.
def getTotalTime(checkin, checkout):

def mystery(inValue):
 return inValue + inValue

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Programming Toolbox: Functions
Immutable variables created in a function have local scope

def scopeTest(inNum, inString, inList):
 inNum = 3

 inString+="And After!"

 inList.pop(-1)
 inList.append(5)

x = 2
y = "Before! "
z = [1,2,3,4]

scopeTest(x,y,z)

print(x)
print(y)
print(z)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Mutable variables can be modified by functions

Programming Toolbox: Functions
Functions are objects (like everything in Python)

INPUT:
Three integers (a, b, c)
An optional function (f)
OUTPUT:
If f exists, return output of f(a, b, c). Else return defaultF(a,b,c)
def wrapperFunction(a, b, c, f=None):
 if f == None:
 return defaultF(a,b,c)
 else:
 return f(a,b,c)

if __name__ == ‘__main__’:
 wrapperFunction(5,3,2, add)

 wrapperFunction(1,1,1, multiply)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

In-Class Exercise: Slot Machine
Let’s program the output of a slot machine!

$500 = Four matching symbols

$100 = Four of a color

$50 = Three matching symbols in a row

$10 = One of each symbol

First Lab Friday!
Bring your laptop (first part will be going over installation instructions)

Lab will focus on how to break down a programming problem

Friday Foreshadowing: getTotalTime()
Given HH:MM:SS format, I want to know the exact difference between start
and stop times in minutes. How would we approach this problem?

