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Introduction



Learning Objectives

Get to know each other through brief introductions

Discuss class logistics and expectations

Begin reviewing programming and Python fundamentals



Who am I? Brad Solomon

Teaching Assistant Professor, Computer Science

2233 Siebel Center for Computer Science

Email: bradsol@illinois.edu

Office Hours:

Thursdays,  11:00 - 12:00 PM

(Details are on the website)

… can also make an appointment directly

mailto:bradsol@illinois.edu


Who am I?

GTEx

Fast search of thousands of short read sequencing experiments. Brad Solomon and Carl Kingsford. Nature Biotech 2016
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Figure 3: Reference flow workflow. All reads are aligned to major-allele reference in
the first pass. High mapping quality alignments are “committed” and included in the
final output. Unaligned reads or reads with low mapping quality are “deferred” and re-
aligned against multiple population genomes in the second-pass. Second-pass alignments
are merged into the final output.

First pass In the first pass, we align all reads to an initial reference genome. For the par-
ticular reference-flow strategies evaluated here (MajorFlow, RandFlow, and RandFlow-
LD), we first aligned to the “global major” reference (Section 2.2). Reads that fail to align
or that align with low mapping quality are “forwarded” to a second pass, whereas reads
that align with high mapping quality are “committed” and are ultimately passed through
to the final output. We use a mapping-quality threshold because it is readily available –
reported by most popular read aligners – and because alignments with low MAPQ are
the most likely to benefit from the second alignment pass. After empirical experiments,
we selected a MAPQ threshold of 10 (Figure S2).

Second pass For reads forwarded to the second pass, we realign to a set of references
that include a wider range of genetic variation. In the methods evaluated here, we use five
second-pass references, each corresponding to a 1000 Genomes Project superpopulation:
AFR (African), AMR (admixed American), EAS (East Asian), EUR (European), and SAS
(South Asian). In the case of the MajorFlow method, the second-pass genomes are simply
the major-allele references corresponding to each of these superpopulations (Section 2.2).
In all cases, the second-pass references consist of a single haplotype.

Stochastic references In the RandFlow and RandFlow-LD strategies, second-pass refer-
ences are designed to represent “random individuals” from the super populations. For
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Reducing reference bias using multiple population reference genomes. Chen et al. Genome Biology 2021



Course Staff Introductions



Who are you?

https://piazza.com/illinois/spring2024/cs277

Feel free to introduce yourself on Piazza: 

Introduce yourself when asking a question

Stop by my office hours at some point this semester!

Freely talk with each other on Discord**

https://piazza.com/illinois/spring2024/cs277


Navigate, organize, and run moderately complex Python projects

What will you get out of this class?



Navigate, organize, and run moderately complex Python projects

Why should you care?

TeamProject

UserInterface

Mobile

HTML

BackEnd

BigData

UserList

Algorithm

SecretSort

UserHash

#include <vector> 

#include "util/coloredout.h" 

#include "cs225/point.h" 

using std::vector; 
using std::string; 
using std::ostream; 
using std::cout; 
using std::endl;

Taken from FastX-Toolkit (hannonlab.cshl.edu)

http://hannonlab.cshl.edu


Understand foundational data structures and algorithms

What will you get out of this class?

A

C

D

E

B
F

G

H

J
K

h(x)

0 3

21

4



Why should you care?

Understand foundational data structures and algorithms
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CCGCACC

CCGCATT

CCGCCAA

CCGCCCA

CCGCCGC

CTGCGCT

AGGCACA

GCCGCGG
CCGCGGT

CGCATGG
GCATGGT

CCCCCGA
CCCCGAC

TTGCGGC

CCGCTGG

CCGCTGC

CCGGATA

CCGGCGT

CCGGCTG

CCGGGAT

CCGGTAA

CCGTATT

TTGCTGA

TTCGTCG

GGACACA
GACACAC

CCGTGAG

CCGTGGC

GCCTGTT

GGCAGGT

TGCCGAT

ATGCTTT

TGGCAAG
GGCAAGA

ACCTGCC

TCTGCGG

CTGCGGG

TGGCATC GGCATCC

GCCTCAA
CCTCAAC

GCTGACA

CTGACAG

TACAAAA
ACAAAAC
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CCTCCAA
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CTGGCAG

CCTCTCT

TCTCTGT

ATGGCCG

TTCTGAA

CCTGACA

TCTGATA

CCTGCAT

TTCTGGA

TCTGGAA

AAATTTA
AATTTAT

TCTGGGA

TCTGGTA

CTCTGTG

TCTGTGT

CCTGTTT

CTAAGGT
TAAGGTA

TGATTTG

TTGAAAA

TGCCCAA

GGATTTT
GATTTTT

GTGACGA

GTGCCCC

GCGCAGT
CGCAGTG

CTGCCCG

TGAACTT

TTGAAGA
TGAAGAA

GCTGGTA

TTGAAGT

CTGAATC

GCCAAAT
CCAAATT

TCGACCG
CGACCGA
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TGACGAC

CTGGTTA

CTGACTG

AGCGCCA
GCGCCAT

GGCAACG

CTGAGGC

TGAGGCG

AATGTAG
ATGTAGG

ATGATAA
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CTCAAAT
TCAAATA

CTGATAG
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CCGATGT
CGATGTT

GAGCCGG
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CTGATTT
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TGGCGAG
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CCGCGAT
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GCTGGTT

CTGCGGT
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TTGCGGT
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CGACCAC
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CGGCTGA

CTGGCCC
TGGCCCC

ACGGCGC
CGGCGCG

GTTACCT

ACGGGAG
CGGGAGT

ACGCCGC
CGCCGCA

TTGGGGC

TGGGGCA

GCGGGTA
CGGGTAA

CTGGTAG

AATTAGC

ACCGATC
CCGATCC

CGGTGCT

CTGGTGG

TGGTGGC

ACGGTTG
CGGTTGA
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GCGGCTG
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TTCGAAA

ACGTAAT
CGTAATT

CTGGCGA
TGGCGAC

GGCAGAG
GCAGAGG

GCCAAAG

CGCAGAT
GCAGATT

CCACTAG

CCACTAT

CAGCGGG
AGCGGGC

TTTTATT
TTTATTG

GTAACGT
TAACGTA

TGTCTGC

GCGTCTT
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CAGCGTC
AGCGTCC

CCGTGAT
CGTGATC

TGGAAGC
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TTGTGCC
TGTGCCG

TTTCACT

AGTGAAA
GTGAAAA

CTGTGTG

AATATTG
ATATTGG

CTGCAAC

TGCAACT

TGTTGAC

TGTTGGG

CTGTTTA

TTGTTTC
TGTTTCG

CTGTTTG
TGTTTGG

GTGGAAA
TGGAAAA

GGGTCGA
GGTCGAC

TTTAACC

TACAGGT

TTGTTAG

TGCGCCG

TTTACGC

AGTGCTG

CCGGTTG

TGGCCGC
GGCCGCC

TTTCGTC

TTAGCAA

TTAGCGT

TAACCAC
AACCACG

GTTAGTA
TTAGTAG

CTTATAG
TTATAGC

TGTTGGC
GTTGGCG

TTATCGG

GTTATGA
TTATGAA

TGCATCC
GCATCCA

ACTCAAC
CTCAACA

TTTCACA
TTCACAG

GAGGCGT

CCTCAGA
CTCAGAT

TCGGATA

CTGACCA

TTTCATT

GTTCCAA
TTCCAAC

CGTAGCG

ACTCCCC
CTCCCCG

GTCATGC
TCATGCA

TTTCCGC

TTTCCTC
TTCCTCG

TTTTGCC

TTTCGAC

GCCACCT

CTTCGGA
TTCGGAC

GTTCGGG
TTCGGGC

CAACTTT
AACTTTA

GTCAAAA
TCAAAAA

GTCATTC

AAAACAA
AAACAAT

GTTGGGG

CCTGAAC

CTGATGT

AGTGCGC

CTTGCGA
TTGCGAG

GGCGAGT

CTGGCGG

ACTGGAC
CTGGACT

GCTGGAT
CTGGATT

ACTTTAC
CTTTACC

CTGGGAC

TTGGGGT

AACCAGC
ACCAGCT

AATTTCA
ATTTCAG

ATTGTGG
TTGTGGC

TTTGTTG

TTGTTGA

CTTTAAA
TTTAAAC

CTTTAAC

ACTTAAG
CTTAAGT

CCTAGGT
CTAGGTC

CTTTTCT
TTTTCTT

GGGACCC
GGACCCG

AACAATT
ACAATTA

TTTTCAT

TTTTCGA

TTTTCGG
TTTCGGC

AATTTGT
ATTTGTC

TTTTGCA
TTTGCAG

TGCCCAC
GCCCACA

GCTTGGC
CTTGGCA

CCTTCTG

CCTTTAG
CTTTAGC

TTTTATC

TTTTATG

CTTTTCA

TCAGTGC

TTTTTGC

TTTTTGG

CTTTTTC

Is it fast to build?  Slow?
Is it small?  Big?

Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgttcagataatgc 217 
             |||||||||||||||||||||||||||||  |     | |   || |||||||||||||| 
Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgttcagataatgc 539
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 
100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold Q (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at Q = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 
SBT per-query time was recorded using a maximum of a single filter in 
active memory and one thread. The other bars show the estimated time to 
achieve the same query results using SRA-BLAST and STAR.
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100 queries with estimated expression >100, >500 and >1,000 TPM 
and variable Q (Online Methods). Solid lines represent mean true-positive 
and false-positive rates, dashed lines represent the median rates on the 
same experiments. Relaxing Q leads to a higher sensitivity at the cost of 
specificity. In more than half of all queries, 100% of true-positive hits can 
be found with Q as high as 0.9.
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The prerequisite requirements for CS 277 are very different

CS 225 vs CS 277

The learning goals and content are also very different.

CS 225 is necessary to enroll in many upper-level CS classes



Course Webpage

https://courses.grainger.illinois.edu/cs277/sp2024/

All course information and links can be found here!

Assignment links and descriptions

Piazza links and Office Hours

Syllabus

Course Schedule and Lecture Material

https://courses.grainger.illinois.edu/cs277/sp2024/


In-Lecture Course Expectations

Attendance is encouraged but not mandatory

Ask questions!

Participate in class exercises / labs



Out-of-lecture Course Expectations

Weekly assessments

Lab assignments are published Friday and due Monday @ 11:59 PM

Mini-projects deadlines are published with each project (~3 weeks)

Watch recorded lectures (if you missed in-person)

All lectures are published on Mediaspace:

https://mediaspace.illinois.edu/channel/CS+277/225216063

https://mediaspace.illinois.edu/channel/CS+277/225216063


Grading

Category Contribution Notes

Mini-Projects 300 75 points 
each

Labs 300 25 points 
each

Exams 300 75 points 
each

Final 100 + 1 retake 
exam

Points Grade

900 A-

800 B-

700 C-

600 D-

F



Mental Health

McKinley Health Center: 217-333-2700 

1109 South Lincoln Avenue, Urbana, Illinois 61801 

This class should be low-stress, medium work-load.

UIUC offers a variety of confidential services:

Counseling Center: 217-333-3704 

610 East John Street Champaign, IL 61820



Diversity, Equity, and Inclusion

Course CAs

Faculty

Campus Belonging Office (Link)

“If you witness or experience racism, discrimination, micro-aggressions, 
or other offensive behavior, you are encouraged to bring this to the 
attention of…”

The Office of Student Conflict Resolution (Link)

CS CARES (Link)

https://diversity.illinois.edu/diversity-campus-culture/belonging-resources/
http://conflictresolution.illinois.edu/policies/report-violation/
https://cs.illinois.edu/about/cs-cares


Class structure is under development!

Class size tripled from last iteration, course description changing

Frequent assessment will allow adjustments as needed



Learning Objective: Programming
Navigate, organize, and run moderately complex Python projects

Three sub-goals to be a better programmer:

1) Building up your ‘programming toolbox’

2) Thinking carefully about a problem

3) Choosing the right tool for the job



Programming Toolbox: Variables
What is a variable in Python?

a="3" 
b=3 
c=3.0 
d=True 

print(a + b) 

print("3 + 3”) 

print(b + c) 

print(c + d) 

print(d) 

print(d - d)

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

What information is necessary to define a variable?



Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 1212

Ref Count 1

X = 1212 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Var Name X



Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 1212

Ref Count 2

X = 1212 

Y = X  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Var Name X

Var Name Y



Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 1212

Ref Count 1

X = 1212 

Y = X  

Y = 9000 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Var Name X

Var Name Y Type integer

Value 9000

Ref Count 1



Programming Toolbox: Variables
Everything in Python is an object

Type integer

Value 12

Ref Count 1

X = 1212 

Y = X  

Y = 9000 

X = 12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Var Name X

Var Name Y Type integer

Value 9000

Ref Count 1

Type integer

Value 1212

Ref Count 0



Programming Choice: Data Type
Python has many built-in data types:

https://www.w3schools.com/python/python_datatypes.asp

string = "Hello World” 

intv = 1 

floatv = 1.0 

listv = [1, 2.0, “:)"] 

dictionary = {"Key" : “Value"} 

boolean = True 

setv = {1, 3, 5, 7, 9} 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 



Programming Choice: Data Type
Which of the following will result in a variable x having the value 0.5?

# ** A ** 
x = 1 / 2 

# ** B ** 
0.5 

# ** C ** 
y = 1.0 
x = y / 2  

# ** D ** 
x == 0.5 

# ** E ** 
2*x = 1 

# ** F ** 
0.5 = x

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Of the valid solutions, which do we like the most?



Programming Choice: Data Type
Some objects are mutable — we can change their values after creation

Type list

Value …

Ref Count 1

X = [1,2,3,4,5] 

print(id(x)) 

X[2]=0 

print(id(x)) 

print(x) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Var Name X



Programming Choice: Data Type
Some objects are immutable — you have to make a new object

Type String

Value 12345

Ref Count 1

X = "12345" 

print(id(x)) 

X[2]=0 

print(id(x)) 

print(x) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Var Name X



Why do we care?
Imagine you have two datasets:

Dataset 1 is very large but fixed in size. 

Dataset 2 starts off small but grows to an unknown size.

Would you rather have a mutable or immutable variable?



What do we care about when writing code?



What do we care about when writing code?



Tying it all back together…

For most simple programs or small datasets, efficiency doesn’t really matter

But this will not always be true — especially in the data sciences!

def type1(strList): 
    out = '' 
    for s in strList: 
        out += s 
    return out 

def type2(strList): 
    return ''.join(strList) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 



Programming Toolbox: Conditionals
Conditional statements control what blocks of code get run

num = 20 

if num in [0,1,2,3,4]: 
    print("Top 5!”) 

elif num > 10: 
    print("num too large!”) 

elif num > 15: 
    print("will this ever get called?”) 

else: 
    print(num)

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 



Programming Toolbox: Conditionals
Whats the difference?

num = 2 

if num >= 1: 
    print("A") 
elif num >= 2: 
    print("B") 
elif num >= 3: 
    print("C") 

1 
2 
3 
4 
5 
6 
7 
8 

num = 2 

if num >= 1: 
    print("D") 
if num >= 2: 
    print("E") 
if num >= 3: 
    print("F") 

1 
2 
3 
4 
5 
6 
7 
8 



Programming Toolbox: Loops
We are often tasked with processing every item in a dataset. 

for i in range(3): 
    print(i) 

count = 0 
while(count <= 2): 
    print(count) 
    count+=1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

We use loops to simplify our code structure.

For Loop:

While Loop:



Programming Toolbox: Loops

count = 0 

while(True): 
    if count % 2 == 0: 
        count+=1 
    else: 
        pass 

    if count > 10: 
        break 
    else: 
        count+=1 
        continue 
        count+=1 
    print('count: {}'.format(count)) 

print('count: {}'.format(count)) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

There are a number of useful keywords for writing loops

Pass:

Break:

Continue:



What does this code print?

count = 0 

while(True): 
    if count % 2 == 0: 
        count+=1 
    else: 
        pass 

    if count > 10: 
        break 
    else: 
        count+=1 
        continue 
        count+=1 
    print('count: {}'.format(count)) 

print('count: {}'.format(count)) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 



Programming Toolbox: Functions
Functions are the building blocks of programming

Input Output

def type1(strList): 
    out = '' 
    for s in strList: 
        out += s 
    return out 

def type2(strList): 
    return ''.join(strList) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

def mystery(inValue): 
    return inValue + inValue 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 



Programming Toolbox: Functions
You should always document the intended input and output.

# INPUT: 
# A string (checkin) 
# A string (checkout) 
# OUTPUT: 
# A float storing the number of minutes between checkin and checkout time. 
def getTotalTime(checkin, checkout): 

def mystery(inValue): 
    return inValue + inValue 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 



Programming Toolbox: Functions
Immutable variables created in a function have local scope

def scopeTest(inNum, inString, inList): 
    inNum = 3 

    inString+="And After!" 

     
    inList.pop(-1) 
    inList.append(5) 

x = 2 
y = "Before! " 
z = [1,2,3,4] 

scopeTest(x,y,z) 

print(x) 
print(y) 
print(z) 

1 
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3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Mutable variables can be modified by functions



Programming Toolbox: Functions
Functions are objects (like everything in Python)

# INPUT: 
# Three integers (a, b, c) 
# An optional function (f) 
# OUTPUT: 
# If f exists, return output of f(a, b, c). Else return defaultF(a,b,c) 
def wrapperFunction(a, b, c, f=None): 
    if f == None: 
        return defaultF(a,b,c) 
    else: 
        return f(a,b,c) 

if __name__ == ‘__main__’: 
    wrapperFunction(5,3,2, add) 
    
    
    wrapperFunction(1,1,1, multiply)

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
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14 
15 
16 
17 
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In-Class Exercise: Slot Machine
Let’s program the output of a slot machine!

$500 = Four matching symbols

$100 = Four of a color

$50 = Three matching symbols in a row

$10 = One of each symbol



First Lab Friday!
Bring your laptop (first part will be going over installation instructions)

Lab will focus on how to break down a programming problem



Friday Foreshadowing: getTotalTime()
Given HH:MM:SS format, I want to know the exact difference between start 
and stop times in minutes. How would we approach this problem?


