Algorithms and Data Structures for Data Science lab_trees

CS 277 Brad Solomon March 1, 2024

(n)

Department of Computer Science

Learning Objectives

Explore structure and use of a binary tree

Practice building programs by applying small functions to solve more complex problems

(Binary) Tree Recursion

A **binary tree** is a tree *T* such that:

T = None

or

```
T = treeNode(val, T_L, T_R)
```

1	class treeNode:
2	<pre>definit(self, val, left=None, right=None):</pre>
3	self.val = val
4	<pre>self.left = left</pre>
5	<pre>self.right = right</pre>

1	class binaryTree:
2	<pre>definit(self):</pre>
3	<pre>self.root = None</pre>
4	
5	

Post-Order Traversal

- 1) Recurse left
- 2) Recurse right
- 3) Get current nodes value

pathToNode(<t>, 2) pathToNode()

How can we return the path to a specific node?

6

6.7

9,407

T(7.5,2) > In class how to search a flee A (P(UIS, Ve traversa) Base (ase: If adde Volve is 24/4 OF IF Locif

distBetweenNodes()

I want to compute the smallest distance between nodes.

Lowest Common Ancestor

The **LCA** is the mutual parent of both nodes with the greatest depth.

distBetweenNodes()

I want to compute the smallest distance between nodes.

distBetweenNodes()

I want to compute the smallest distance between nodes.

