Algorithms and Data Structures for Data Science

lab ml

CS 277 April 5, 2024
Brad Solomon

UNIVERSITY OF o_| ° 0

ILLINOIS | ¢

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Using a graph as a state space j
/. \/

An introduction to reinforcement learning

Honeycomb Havoc

Game of Nim
« Each game starts with k tokens on the table
« Starting with Player 1, players alternate turns:
o Each turn, a player may pick up 1 or 2 tokens

o The player who picks up the last token(s) wins

Find a partner and play couple of games!

Or you can play with the computer
https://education.jlab.org/nim/

https://education.jlab.org/nim/

Solving Nim?

Claim: You can figure out how to play Nim perfectly by looping and
remembering things in a dict/array

Coins on the board | 1 2 3 4 >4

to start with:

If both players play = Wins! Wins! Loses ;| Wins? There's a
perfectly, the first pattern ...

player always:

How general?

So, depending on the number of tokens, either player
1 or player 2 can *always™ win

This can be generalized:

Zermelo's theorem (game theory)

From Wikipedia, the free encyclopedia

For Zermelo's theorem in set theory, see well-ordering theorem.

In game theory, Zermelo's theorem is a theorem about finite two-person games of perfect information in which the players move alternately and in which chance does
not affect the decision making process. It says that if the game cannot end in a draw, then one of the two players must have a winning strategy (i.e. force a win). An
alternate statement is that for a game meeting all of these conditions except the condition that a draw is not possible, then either the first-player can force a win, or the
second-player can force a win, or both players can force a draw.!['l The theorem is named after Ernst Zermelo.

Other Perfect Information Games

Nim (solved, and you can figure out the general rule)
Tic-Tac-Toe (solved, and coding it up is tricky but | bet many of you cant lose)

Connect-4 (solved, player that starts can always win by dropping a
counter in the middle. However there are ~4 trillion configurations)

Checkers (solved (“weakly”, technical term) - both players can always
guarantee a draw)

Chess! (unsolved, more configurations than atoms in the universe ...)

State Spaces

A state space is a mathematical representation of the
state of a physical system.

L
RAe

Nim Reinforcement Learning

1. Build a Nim graph

2. Run a random Nim game

3. Update the weights based on the results — and repeat!

make_edge_list()
™
Given a count of tokens, create a directed edge list = 0
Tv//\ Td\'<\ ¥ oc Mﬁ/\ s
e —

1. Each vertex label is a string of the form “p<#>-<tokens>'¢

—— — __ “,Oh/.: I
rp2_3: é\‘ ~?\"}€"/: 1 g2 Q/'\,

2. Each edgeis a list of form “[start, end]

K\) gy bse < PL 4"1/(['5 1 L4
EX: [cpl']-@,:‘pz_g,u bg € -
16)

3. Edges are directed and exist only for valid moves.

12 A 4 Take
[p1-10”,°p2-7"] valid??l @t [pl-10°,°pl-9°] valid? "
- T bate 3~ = =

—
Ex: ‘pl-10°,
—

build_graph)

Given a directed edge list, create a NetworkX graph

1. The graph must be a directed graph!

\.
G = nx.Graph() > G = nx.DiGraph()

(= \
Pl Q RO
2 O Q X g © 0P
\ 3 > 1= o

All operations still work — but we now assume edges are one direction.

build_graph)

Given a directed edge list, create a NetworkX graph

2. The graph must be weighted!

——
G = nx.Graph() G = nx.DiGraph()
St
G = nx.add edge(A, B, weight=b) O

f)

G[A][B][‘weight’] # Has value 5

All operations still work — but we now assume edges are one direction.

NetworkX Graph ADT

Find NVARY
getVertlces —> list(G. nod(e_s/M N2 ¢ CV))
getEdges m

areAdjacent(u, v) —> G.has_edge(u, v)

Insert ¢ O Q‘MP)"

\ & 7 ad
insertVertex(v) —> G.add_node(v) / only St
insertEdge(u, v) —> G.add_edge(u, v) @ @

Remove

removeVertex(v) —> G.remove_node(v)

removekdge(u, v) —> G.remove_edge(u, v)

play_random_game() & Star

| =

Given a NetworkX graph and a start vertex, return a path through the game

1. You must use Landom.choi(e() on t@s{t of adjacent nodes

How can I get a list of keys from a dictionary?
L‘«ﬁ*’ CJ/: O)o'\':c-'/\} @/ (D \[} :5‘4 ary | {((‘)ag ()

\ |

ond

2. You must save the path as a list of edges

Edges must be of the form(istart, end]

Bl Sk ho be oA

update_edge_weights()
Given a path through the Nim graph, update weights for winner / loser
1. Every move made by the winner gets +1 to its edge weight

X+=

2. Every move made by loser gets -1 to its edge weight "

l//
Access a specific edge with: (G[start][stop][‘weight’]

\

2. How do | know the winner / loser given a path? (Who won:)

/

1 _ I 1 _ 1 I _ 1 I _ E_/?‘ \OS‘— ¢

[('p1-2", 'p2-1"), ('p2-1', 'pl-07)] st fum
N

[('pl'zlJ 'pz'@')] n0 Moves

\WAdAAT
CXEXTXOXTXTX X

JIWWY

