
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

April 5, 2024

lab_ml

Learning Objectives

Using a graph as a state space

An introduction to reinforcement learning

Honeycomb Havoc

Game of Nim

• Each game starts with k tokens on the table

• Starting with Player 1, players alternate turns:

o Each turn, a player may pick up 1 or 2 tokens

o The player who picks up the last token(s) wins

Find a partner and play couple of games!

Or you can play with the computer
https://education.jlab.org/nim/

https://education.jlab.org/nim/

Solving Nim?

Coins on the board
to start with:

1 2 3 4 >4

If both players play
perfectly, the first
player always:

Wins! Wins! Loses :| Wins? There’s a
pattern ...

Claim: You can figure out how to play Nim perfectly by looping and
remembering things in a dict/array

How general?

So, depending on the number of tokens, either player
1 or player 2 can *always* win

This can be generalized:

Other Perfect Information Games

Chess! (unsolved, more configurations than atoms in the universe …)

Nim (solved, and you can figure out the general rule)

Tic-Tac-Toe (solved, and coding it up is tricky but I bet many of you cant lose)

Connect-4 (solved, player that starts can always win by dropping a
counter in the middle. However there are ~4 trillion configurations)

Checkers (solved (“weakly”, technical term) - both players can always
guarantee a draw)

State Spaces
A state space is a mathematical representation of the
state of a physical system.

X
0

X
0

X

X 0

X 0
X

0
X

0

X

0

X

0

Nim Reinforcement Learning
1. Build a Nim graph

2. Run a random Nim game

3. Update the weights based on the results — and repeat!

make_edge_list()
Given a count of tokens, create a directed edge list

1. Each vertex label is a string of the form `p<#>-<tokens>`

2. Each edge is a list of form `[start , end]`

3. Edges are directed and exist only for valid moves.

Ex: ‘p1-10’, ‘p2-3’

Ex: [‘p1-10’,‘p2-9’]

[‘p1-10’,’p2-7’] valid? [‘p1-10’,’p1-9’] valid?

build_graph()
Given a directed edge list, create a NetworkX graph

1. The graph must be a directed graph!

G = nx.DiGraph() G = nx.Graph()

All operations still work — but we now assume edges are one direction.

build_graph()
Given a directed edge list, create a NetworkX graph

2. The graph must be weighted!

G = nx.DiGraph() G = nx.Graph()

All operations still work — but we now assume edges are one direction.

G = nx.add_edge(A, B, weight=5)

G[A][B][‘weight’] # Has value 5

NetworkX Graph ADT
Find

Insert

Remove

getVertices() —> list(G.nodes())

getEdges(v) —> G[v]

areAdjacent(u, v) —> G.has_edge(u, v)

insertVertex(v) —> G.add_node(v)

insertEdge(u, v) —> G.add_edge(u, v)

removeVertex(v) —> G.remove_node(v)

removeEdge(u, v) —> G.remove_edge(u, v)

play_random_game()
Given a NetworkX graph and a start vertex, return a path through the game

1. You must use random.choice() on the list of adjacent nodes

How can I get a list of keys from a dictionary?

2. You must save the path as a list of edges

Edges must be of the form [start, end]

update_edge_weights()
Given a path through the Nim graph, update weights for winner / loser

1. Every move made by the winner gets +1 to its edge weight

Access a specific edge with: G[start][stop][‘weight’]

3. How do I know the winner / loser given a path? (Who won:)

[('p1-2', 'p2-1'), ('p2-1', 'p1-0')]

2. Every move made by loser gets -1 to its edge weight

[('p1-2', 'p2-0')]

