
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

January 26, 2024

lab_debug

Learning Objectives

Practice identifying and correcting errors in code

Review function overloading and class definitions

Review the vscode workspace format in PrairieLearn

Running Python in vscode

Debugging Python Code

IndexError Traceback (most recent call last)
<ipython-input-2-7763c3fa394d> in <module>
 1 l1 = [1, 2, 3, 4, 5]
----> 2 print(removeOdds(l1)) # [2, 4]
 3 l2 = [2]
 4 print(removeOdds(l2)) # [2]
 5 l3 = [1, 3]

<ipython-input-1-d04640cd1381> in removeOdds(list_1d)
 9 def removeOdds(list_1d):
 10 for i in range(len(list_1d)):
---> 11 val = list_1d[i]
 12 if(val % 2 == 1):
 13 list_1d.pop(i)

IndexError: list index out of range

Read the error message!
The error message will usually tell you where and how things went wrong

NameError: Problem with a variable

TypeError: Problem with a variable’s type

IndentationError: Problem with whitespace in code

AttributeError: Object doesn’t have a variable or function being called

IndexError: You are trying to access something that doesn’t exist

When in doubt — Google is your friend!

You encounter an error…
Traceback (most recent call last):
 File “examples.py”, line 2, in <module>
 x += 5
NameError: name 'x' is not defined

Traceback (most recent call last):
 File "examples.py", line 6, in <module>
 print(test[2])
IndexError: list index out of range

x += 5

test = [0, 3]

print(test[2])

1
2
3
4
5
6
7
8
9

10
11
12
13

Not every error has an error message!

def getReverseEvens(n):

 outList = []

 for i in range(n, 0, -2):
 outList.append(i)

n = 4
ans = [4, 2, 0]

if (getReverseEvens(n)==ans):
 print("Correct!")
else:
 print("Incorrect!")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1. Understand the System

2. Make it Fail

Use the input that failed!

Why did it fail?

Where did it fail?

Correct it and test again!

Does the input work now?

3. Quit Thinking and Look

print()

break / return

def getReverseEvens(n):
 outList = []
 for i in range(n, -1, -2):
 outList.append(i)

n = 4
ans = [4, 2, 0]

if (getReverseEvens(n)==ans):
 print("Correct!")
else:
 print("Incorrect!")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

4. Divide and Conquer

Identify where the problem isprint("Crash on startup?")

...

print("Crashed yet?")

...

print("Before big function call")

...

print("After big function call")

...

print("Plotting the output")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Crash on startup?
Crashed yet?
Before big function call
After big function call

5. Change One Thing at a Time

def getReverseEvens(n):
 outList = []
 for i in range(n, -1, -2):
 outList.append(i)
 return outList

n = 4
ans = [4, 2, 0]

print(getReverseEvens(n))

if (getReverseEvens(n)==ans):
 print("Correct!")
else:
 print("Incorrect!")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Both a coding and debugging tip!

6. Keep an Audit Trail

Write down the details — great for office hours!

Git commit early and often (with messages!)

https://courses.grainger.illinois.edu/cs277/sp2024/resources/course-git/

https://courses.grainger.illinois.edu/cs277/sp2024/resources/course-git/

7. Check the Plug

Question your assumptions

Check obvious things!

‘Rubber Duck’ debugging

Is the test wrong?

8. Get a Fresh View

https://piazza.com/illinois/spring2024/cs277/home

Also Discord!

https://piazza.com/illinois/spring2024/cs277/home

Coding the lab
1) Treat each function as its own independent problem

2) Identify what the function should be doing

3) Correct any errors that are preventing the code from running

4) Correct any errors where the function output is wrong

5) Be aware of edge cases and test your solution thoroughly!

