Algorithms and Data Structures for Data Science Hashing

CS 277
February 15, 2023
Brad Solomon

Lab_cipher Feedback

Average score: 104\%

PL average time: 73 minutes

Under 1 hour
Between 1-2 hours
Between 2-3 hours
Between 3-4 hours
Over 4 hours

Class helpful to all students (who filled out survey)

Lab taught learning objectives (but did not improve coding confidence)

People liked the lab as it required logic to solve

Learning Objectives

Motivate and define a hash table

Discuss what a 'good' hash function looks like

Identify a key weakness of the hash table

Introduce strategies to 'correct' this weakness

Optimal Find

Imagine you have an arbitrary collection of numbers and want to store them in an efficient data structure designed for find.

What would you do?

Optimal currently is $O(n)$

If we recognize that libraries are ordered: $O(\log n)$

What if $O(\log n)$ isn't good enough?

A Hash Table based Dictionary

ISBN: 9781526602381

Call \#: PR
6068.093

H35 1998

A Hash Table based Dictionary

$$
\begin{array}{l|l}
1 & d=\{ \} \\
2 & d[k]=v
\end{array}
$$

A Hash Table consists of three things:
1.
2.
3.

Hash Function

Maps a keyspace, a (mathematical) description of the keys for a set of data, to a set of integers.

m elements

Key \quad Value

Hash Function

A hash function must be:

- Deterministic:
- Efficient:
- Defined for a certain size table:

Hash Function

(Angrave, CS 241)
(Beckman, CS 421)
(Challon, CS 125)
(Davis, CS 101)
(Evans, CS 225)
(Fagen-Ulmschneider, CS 107)
(Gunter, CS 422)
(Herman, CS 233)

Hash Function

General Hash Function

An $O(1)$ deterministic operation that maps all keys in a universe U to a defined range of integers $[0, \ldots, m-1$]

- A hash:
- A compression:

Choosing a good hash function is tricky...

- Don't create your own!

Hash Function

$$
h(k)=(k . \text { firstName }[0]+k . \operatorname{lastName[0])\% m}
$$

$$
h(k)=(\operatorname{rand}() * k . n u m P a g e s) \% m
$$

$$
h(k)=(\text { Order I insert [Order seen] }) \% m
$$

Hash Function

Hash Function

$$
{ }^{\prime} \mathrm{J}^{\prime}+{ }^{\prime} \mathrm{R}^{\prime}=28
$$

25	\varnothing
26	\varnothing
27	\varnothing
28	Harry P
29	\varnothing

Hash Function

Hash Function

Hash Collision

A hash collision occurs when multiple unique keys hash to the same value

J.K Rowling = 28!

	\ldots
25	Goosebumps
26	\varnothing
27	\varnothing
28	$? ? ?$
29	\varnothing
\ldots	\ldots

Perfect Hashing

If $m \geq S$, we can write a perfect hash with no collisions

m elements

Kev Valve

General Purpose Hashing

In CS 277, we want our hash functions to work in general.

m elements

General Purpose Hashing

If $m<U$, there must be at least one hash collision.

General Purpose Hashing

By fixing h, we open ourselves up to adversarial attacks.

A Hash Table based Dictionary

```
1 d = {}
2 d[k] = v
```

A Hash Table consists of three things:

1. A hash function
2. A data storage structure
3. A method of addressing hash collisions

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

- Open Hashing:
- Closed Hashing:

Open Hashing

In an open hashing scheme, key-value pairs are stored externally (for example as a linked list).

Hash Collisions (Open Hashing)

A hash collision in an open hashing scheme can be resolved by
\qquad . This is called separate chaining.

Insertion (Separate Chaining)

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A +	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	B +	7

0	\varnothing
1	\varnothing
2	\varnothing
3	\varnothing
3	\varnothing
4	\varnothing
5	\varnothing
6	\varnothing
7	\varnothing
8	\varnothing
9	\varnothing
10	\varnothing

Insertion (Separate Chaining)

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A+	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	B +	7

Insertion (Separate Chaining)

Where does Alice end up relative to Anna in the chain?

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A+	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	B +	7

Insertion (Separate Chaining)

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A +	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	$\mathrm{B}+$	7

Insertion (Separate Chaining)

Key	Value	Hash
Bob	$\mathrm{B}+$	2
Anna	$\mathrm{A}-$	4
Alice	$\mathrm{A}+$	4
Betty	B	2
Brett	$\mathrm{A}-$	2
Greg	A	0
Sue	B	7
Ali	$\mathrm{B}+$	4
Laura	A	7
Lily	$\mathrm{B}+$	7

Insertion (Separate Chaining)

Key	Value	Hash
Bob	B +	2
Anna	A-	4
Alice	A +	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B +	4
Laura	A	7
Lily	B +	7

Find (Separate Chaining)

Key	Hash
Sue	7

Remove (Separate Chaining)

Key	Hash
Betty	2

Hash Table (Separate Chaining)

For hash table of size \boldsymbol{m} and \boldsymbol{n} elements:

Find runs in: \qquad

Insert runs in: \qquad

Remove runs in: \qquad

Fundamentals of Probability

Imagine you roll a pair of six-sided dice.
The sample space Ω is the set of all possible outcomes.

An event $E \subseteq \Omega$ is any subset.

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
The expectation of a (discrete) random variable is:

$$
E[X]=\sum_{x \in \Omega} \operatorname{Pr}\{X=x\} \cdot x
$$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

$$
\begin{aligned}
& =\sum_{x} \sum_{y} \operatorname{Pr}\{X=x, Y=y\}(x+y) \\
& =\sum_{x} x \sum_{y} \operatorname{Pr}\{X=x, Y=y\}+\sum_{y} y \sum_{x} \operatorname{Pr}\{X=x, Y=y\} \\
& =\sum_{x} x \cdot \operatorname{Pr}\{X=x\}+\sum_{y} y \cdot \operatorname{Pr}\{Y=y\}
\end{aligned}
$$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

Hash Table

Worst-Case behavior is bad - but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:
2) Create a universal hash function family:

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, h, implies
$\forall k_{1}, k_{2} \in U$ where $k_{1} \neq k_{2}, \operatorname{Pr}\left(h\left[k_{1}\right]=h\left[k_{2}\right]\right)=\frac{1}{m}$

Uniform:

Independent:

Separate Chaining Under SUHA

Given table of size m and n inserted objects
Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

Hash Table (Separate Chaining w/ SUHA)

For hash table of size \boldsymbol{m} and \boldsymbol{n} elements:

Find runs in: \qquad

Insert runs in: \qquad

Remove runs in: \qquad

Separate Chaining Under SUHA Pros:

Cons:

Next time: Closed Hashing

Closed Hashing: store k, v pairs in the hash table

$$
\begin{aligned}
& S=\{1,8,15\} \\
& h(k)=k \% 7
\end{aligned}
$$

