
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

February 13, 2023

Stacks and Queues (and Sets)

Learning Objectives

Explore tradeoffs in data structures

Introduce sets

Introduce the stack and queue

Tradeoffs in data structures

As we progress in the class, we will see that isn’t very good.O(n)

Take searching for a specific list value:

2 7 5 9 7 14 1 0 8 3

0 1 2 3 5 7 7 8 9 14

Tradeoffs in data structures

C S 2 7 7
None

head

Getting the size of a linked list has a Big O of:

Tradeoffs in data structures: Bag of Words

gro
w

tha
t

rap
id

We

als
o

fut
ure

Off

ne
w

ho
w

gro
wt
h

Da
nd
D

are

da
ta

ske
tch

de
lta

the

Genome assembly databases are growing rapidly. The
sequence content in each new assembly can be
largely redundant with previous ones, but this is
neither conceptually nor algorithmically easy to
measure. We propose new methods and a new tool
called DandD that addresses the question of how
much new sequence is gained when a sequence
collection grows. DandD can describe how much human
structural variation is being discovered in each
new human genome assembly and when discoveries will
level off in the future. DandD uses a measure
called δ (“delta”), developed initially for data
compression. Computing δ directly requires counting
k-mers, but DandD can rapidly estimate it using
genomic sketches. We also propose δ as an
alternative to k-mer-specific cardinalities when
computing the Jaccard coefficient, avoiding the
pitfalls of a poor choice of k. We demonstrate the
utility of DandD’s functions for estimating δ,
characterizing the rate of pangenome growth, and
computing allpairs similarities using k-independent
Jaccard. DandD is open source software available
at: https://github.com/jessicabonnie/dandd.

Jessica Bonnie et al. DandD: efficient measurement of sequence growth and similarity

https://github.com/jessicabonnie/dandd

Tradeoffs in data structures
I want a list that can add and remove in O(1)

I am willing to make random access impossible to do so

Stack Data Structure
A stack stores an ordered collection of objects (like a list)

However you can only do two operations:

Push: Put an item on top of the stack

Pop: Remove the top item of the stack (and return it)

push(3); push(5); pop(); push(2)

Stack Data Structure
The stack is a last in — first out data structure (LIFO)

def reverse(inList):
 s = stack()
 for v in inList:
 s.push(v)

 out = []
 while not s.empty():
 out.append(s.pop())
 return out

1
2
3
4
5
6
7
8
9

reverse([3, 4, 5, 6, 7, 8])

Not a Python built-in!

Stack Data Structure
Stack s
s.push(3)
s.push(8)
s.push(4)
s.pop()
s.push(7)
s.pop()
s.pop()
s.push(2)
s.push(1)
s.push(3)
s.push(5)
s.pop()
s.push(9)

The Python list has all the necessary stack operations!

def push(self, val):
 self.push_count += 1
 self.data.append(val)

def pop(self):
 self.pop_count += 1
 if self.__len__() > 0:
 return self.data.pop()

1
2
3
4
5
6
7
8
9

Stack Data Structure
The stack is also easily implemented as a linked list

C S 2 7 7
None

head

push(X)

Stack Data Structure
The stack is also easily implemented as a linked list

C S 2 7 7
None

head

pop()

Programming w/ the Call Stack
def Happy():
 return "Happy"

def Little():
 return "Little"

def Trees():
 return "Trees"

def LittleTrees():
 return Little() + Trees()

def BobRoss():
 return Happy() + LittleTrees()

if __name__ == '__main__':
 print(BobRoss())

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Queue Data Structure
A queue stores an ordered collection of objects (like a list)

However you can only do two operations:

Enqueue: Put an item at the back of the queue

Dequeue: Remove and return the front item of the queue

enqueue(3); enqueue(5); dequeue(); enqueue(2)

Queue Data Structure
The queue is a first in — first out data structure (FIFO)

What data structure excels at removing from the front?

Can we make that same data structure good at inserting at the end?

Queue Data Structure
The queue is a first in — first out data structure (FIFO)

C S 2 7 7
None

head

tail

Queue Data Structure
The queue is a first in — first out data structure (FIFO)

Queue q
q.enqueue(3)
q.enqueue(8)
q.enqueue(4)
q.dequeue()
q.enqueue(7)
q.dequeue()
q.dequeue()
q.enqueue(2)
q.enqueue(1)
q.enqueue(3)
q.enqueue(5)
q.dequeue()
q.enqueue(9)

Queue Data Structure
An array can implement a queue as well!

We just need to track three numbers:

Front

Capacity

Size

Queue Data Structure Queue q
q.enqueue(3)
q.enqueue(8)
q.enqueue(4)
q.dequeue()
q.enqueue(7)
q.dequeue()
q.dequeue()
q.enqueue(2)
q.enqueue(1)
q.enqueue(3)
q.enqueue(5)
q.dequeue()
q.enqueue(9)

Front:

Capacity:

Size:

Queue Data Structure

Front

Size

Front

Size

Front

The array implementation treats the allocated memory as a circle

Queue Array Resizing
Queue q
...
Fill queue
...
q.enqueue(8)

6 7 0 1 2 3 4 5

Front:

Capacity:

Size:

2

8

8

Stacks and Queues

Engineering vs Theory Efficiency
Time x1 billion Like

L1 cache reference 0.5 seconds Heartbeat 💓

Branch mispredict 5 seconds Yawn 😲

L2 cache reference 7 seconds Long yawn 😲 😲 😲

Mutex lock/unlock 25 seconds Make coffee ☕

Main memory reference 100 seconds Brush teeth

Compress 1K bytes 50 minutes TV show 📺

Send 2K bytes over 1 Gbps network 5.5 hours (Brief) Night's sleep 🛌

SSD random read 1.7 days Weekend

Read 1 MB sequentially from memory 2.9 days Long weekend

Read 1 MB sequentially from SSD 11.6 days 2 weeks for delivery 📦

Disk seek 16.5 weeks Semester

Read 1 MB sequentially from disk 7.8 months Human gestation 🐣

Above two together 1 year 🌍 ☀

Send packet CA->Netherlands->CA 4.8 years Ph.D. 🎓

(Care of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

Engineering vs Theory Efficiency
class queue:
 def __init__(self):
 self.data = []

 def enqueue(self, val):
 self.data.append(val)

 def dequeue(self):
 if len(self.data) > 0:
 return self.data.pop(0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

def enqueue(self, val):

 i = (self.front + self.size) % self.capacity

 self.data[i]=val
 self.size += 1

 if self.size == self.capacity:
 temp = [None] * self.capacity * 2

 for i in range(self.size):
 pos = (self.front + i) % self.capacity
 temp[i]=self.data[pos]

 self.front = 0
 self.data = temp
 self.capacity = len(temp)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Tradeoffs in data structures
I want a data structure that can add, remove, and find items in O(1) *

I am willing to remove the ‘ordered’ property of my collection to do this

I am willing to remove the ability to store duplicate elements to do this

Set “Data Structure”
A set stores an unordered collection of objects with no duplicates

gro
w

tha
t

rap
id

We

als
o

fut
ure

Off

ne
w

ho
w

gro
wt
h

Da
nd
D

are

da
ta

ske
tch

de
lta

the

Genome assembly databases are growing rapidly. The
sequence content in each new assembly can be
largely redundant with previous ones, but this is
neither conceptually nor algorithmically easy to
measure. We propose new methods and a new tool
called DandD that addresses the question of how
much new sequence is gained when a sequence
collection grows. DandD can describe how much human
structural variation is being discovered in each
new human genome assembly and when discoveries will
level off in the future. DandD uses a measure
called δ (“delta”), developed initially for data
compression. Computing δ directly requires counting
k-mers, but DandD can rapidly estimate it using
genomic sketches. We also propose δ as an
alternative to k-mer-specific cardinalities when
computing the Jaccard coefficient, avoiding the
pitfalls of a poor choice of k. We demonstrate the
utility of DandD’s functions for estimating δ,
characterizing the rate of pangenome growth, and
computing allpairs similarities using k-independent
Jaccard. DandD is open source software available
at: https://github.com/jessicabonnie/dandd.

https://github.com/jessicabonnie/dandd

Sets in Python: Constructor
The set constructor set() takes a list or tuple as input

s1 = set([1,2,3,4])

s2 = set((3,4,5,6))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Sets in Python: Add

Add(x) adds object x to the set; it does nothing if x is already present

mySet = set()

mySet.add(1)

mySet.add(1)

mySet.add(3)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Sets in Python: Remove
Remove(x) removes the object x from the set if it is present.

mySet = set([1,2,3,4,5])

mySet.remove(3)

print(mySet)

mySet.remove(10)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

If x does not exist, it will crash.

Sets in Python: Data Access
Sets have no indices (no order of objects). We can only access by:

mySet = set([1,2,3,4,5])
for obj in mySet:
 print(obj)

print(10 in mySet)

1
2
3
4
5
6
7
8
9

10
11
12
13

1. Looping through a set for each element

2. Looking up a specific element in our set

Sets in Python: Implementation
A Python set is implemented using a hash table.

Claim: A hash table has direct lookup, add, and remove in O(1) *

Set Operations

A ∪ B

A ∩ B

A / B

A △ B

Union

Intersection

Difference

Symmetric difference

 = {1, 2, 3, 4}A = {3, 4, 5, 6, 7}B

Set Similarity
How can we describe how similar two sets are?

Set Similarity
How can we describe how similar two sets are?

Set Similarity
To measure similarity of & , we need both a measure of how
similar the sets are but also the total size of both sets.

A B

J =
|A ∩ B |
|A ∪ B |

 is the Jaccard coefficientJ

|A ∩ B |
|A ∪ B |

=

|A ∩ B |
|A ∪ B |

=

0 <
|A ∩ B |
|A ∪ B |

< 1

0

1

Set Similarity

 = {1, 2, 3, 4}A = {3, 4, 5, 6, 7}B

J =
|A ∩ B |
|A ∪ B |

=

Set Similarity

Set Similarity

 = {1, 2, 3, 4}A = {3, 4, 5, 6, 7}B

J =
|A ∩ B |
|A ∪ B |

=
|{3,4} |

|{1,2,3,4,5,6,7} |
=

2
7

