
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277

Brad Solomon

May 1, 2023

CS 277 in Review

Final Exam Retakes
The final exam will have four linked exams:

The actual final (clearly labeled)

Three makeup exams (Labeled Exam 1 Retake, Exam 2 Retake, …)

You must take the final. You can choose to take one of the others

So its a big cumulative exam — how do I prepare?

Please fill out end-of-semester evaluations
Feedback is important for the development of the class

This is especially important for this class as it is very new and growing

An optional final reflection form: Mini-Project Reflection Feedback Form

https://docs.google.com/forms/d/e/1FAIpQLScyMe4oKnp0VkuxD97iGGID2iC4NAt1ciEvH8tyVWQNXKwvkg/viewform?usp=sf_link

Python Fundamentals
Can you read and understand Python code?

Conditionals

Loops

Functions

What did the corresponding labs focus on?

lab_fundamentals

lab_debug

Asymptotic Efficiency
Can you work out the Big O of a block of code given the code?

Can you determine the relative size (or speed) of different Big Os?

Can you simplify a Big O to its dominant term?

Lists
When are lists an appropriate data structure to use?

Order matters

Insertion speed or when repeatedly finding minimum
(Unsorted)

What did the corresponding labs focus on?

lab_parsing

lab_cipher

(Sorted)

Arrays
Running time, how to use, implementation details

Add()

Insert()

__getitem__()

__len__()

Remove()

Linked Lists
Running time, how to use, implementation details

Add()

Insert()

__getitem__()

__len__()

Remove()

Arrays vs Lists
Singly Linked List Array

Look up given an input position

Search given an input value

Insert/Remove at front

Insert/Remove at arbitrary location

Stacks and Queues
Running time, how to use, implementation details

Sets and Set Similarity
What distinguishes a set from a list?

How do we measure set similarity?

Hash Tables
Running time, how to use, implementation details

Closed vs Open Hashing

Probing strategies seen in class:

What is SUHA? What does it mean?

Hash Tables
Lots of conceptual questions!

What happens when my hash table gets close to full? Can it get full?

What is SUHA? What does it mean?

How should I implement a table for given constraints?

Sketches

Bloom Filters

K-minimum value

Minhash Sketch

Sketches
Lots of conceptual and practical questions!

mp_sketching all about real-world use cases of sketches

Should be able to build a bloom filter manually

Should be able to state what set is larger based on minima values

Should be able to judge which sets are most similar given min hashes

Sorting Algorithms
Running time, how to use, implementation details

Selection Sort

Insertion Sort

Merge Sort

Quick Sort

Best Case Time Worst Case time Best Case Space Worst Case Space

SelectionSort
O(n2) O(n2) O(1) O(1)

InsertionSort
O(n) O(n2) O(1) O(1)

MergeSort
O(n log n) O(n log n) O(n) O(n)

QuickSort
O(n log n) O(n2) O(log n) O(n)

Sorting Algorithms

Recursion

Base Case: What is the smallest sub-problem? What is the trivial solution?

Recursive Step: How can I reduce my problem to an easier one?

Combining: How can I build my solution from recursive pieces?

Trees and graphs are all about recursion!

Binary Search
Running time, how to use, implementation details

Both lists and trees have a binary search function!

Be able to walk through a binary search by hand

Trees
Running time, how to use, implementation details

Binary Tree

BST

AVL

K-dimension tree

Huffman

Tree Traversals
An exercise in recursion!

Pre-order, in-order, post-order just a matter of code order

Depth-first Traversal vs Breadth-first Traversal

We did not cover this in great detail

Nearest-neighbor Search

Should be able to recreate a traversal manually

The questions I can ask are somewhat limited

AVL Tree
Gets its own slide because its so important!

Fixes all the issues we have with a BST

Understand the tree ADT for this!

Understand the rotations (what they do, when to use)

Huffman Tree
Gets its own slide even though we barely covered it

I’d like to ask questions about the Huffman tree but we didnt cover concepts

I can reasonably ask you to know how:

Produce a Huffman code from a tree

Build a (small) Huffman tree from a set of frequencies

Graphs
Running time, how to use, implementation details

Edge List

Adjacency Matrix

Adjacency List

Expressed as O(f)
Edge List Adjacency Matrix Adjacency List

Space m (or n+m) n2 n+m

insertVertex(v) Impossible or 1* n* 1*

removeVertex(v) m** n deg(v)***

insertEdge(u, v) 1 1 1*

removeEdge(u, v) m 1
min(deg(u),

deg(v))

getEdges(v) m n deg(v)

areAdjacent(u, v) m 1
min(deg(u),

deg(v))

|V|= n,|E|= m

Graph Traversals
Both conceptual and practical knowledge required

When should I use BFS or DFS?

Be able to manually perform a traversal if given key info.

What can I output from a traversal? Why should I?

Shortest Path
Dijkstras is only shortest path you need to know

Graph runtimes usually depend on implementation details!

Be able to manually perform a traversal if given key info.

Minimum Spanning Tree
Understand Kruskal and Prim algorithm details

Graph runtimes usually depend on implementation details!

Be able to manually perform the algorithm if given key info.

Be able to state the runtime for a given piece of code

Questions?
For Wednesday’s lecture:

Post questions on Piazza by mid-day tomorrow.

