Algorithms and Data Structures for Data Science

Graph Implementations 3

CS 277 April 17,2023
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Exam 3 Signups Available

April 24 — April 27
Very limited window for makeup exams (since end of semester is near)

Covers content from week 10 — 14

Learning Objectives

Review adjacency matrix graph implementations
Introduce adjacency list implementation

Discuss the strengths and weaknesses of each implementation

Graph Implementation: Adjacency Matrix

Vertex Storage:

(W
/ \ A dictionary (or list) of vertices
O W)

y4
Also stores the indexing of the matrix

Edge Storage:
-ﬂﬂﬂﬂ

A |v| x |v| matrix storing edges

elr]llc] = 1 if there is an edge between rand c

©O B R
o = O
= O =
o = O

Graph Implementation: Adjacency Matrix

Pros:

Fast lookup and modification of edges

Easily extended to weighted and directed

Cons:

Slow to add or remove new vertices

Getting the degree of nodes is slow

Storage costs are relatively large

Adjacency List

@ Vertex Storage:
N\
®/ W) ©
u/> AEES Edge Storage:
J
o IR

Adjacency List

Vertex Storage:
/ ®\ g
W W @
u/» VoW Edge Storage:
d=2

Adjacency List

getVertices():

Adjacency List

getEdges(v):

Adjacency List

areAdjacent(u, v):

Adjacency List

insertVertex(v):

Adjacency List

removeVertex(v):

Adjacency List

insertEdge(u, v):

Adjacency List

removeEdge(u, v):

Adjacency List

Pros:
/ ®\
O W) @
T vV e w Cons:
02

Adjacency List

How would our data structure change if...

/ \ Edges are directed:

Adjacency List

How would our data structure change if...

/ \ Edges are weighted:

|IV|=n, |E|=m

Edge List Adjacency Matrix Adjacency List
Expressed as O(f)
n+m n2 n+m

Space

insertVertex(v) 1* n* 1*
removeVertex(v) m** n deg(v)***
insertEdge(u, v) 1 1 1%

in(d ’
removeEdge(u, v) m 1 min(deg(u)

deg(v))
getEdges(v) m n deg(v)
areAdjacent(u, v) m 1 min(deg(u),

deg(v))

Graph Traversals

There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:

2

O
O/QO

 Rooted .
« Acyclic .

Traversal: BFS

-
Traversal: BFS o [P Adjacent Eds

o
A
B
C
D
E
F
G
H

uu Adjacent Edges

- BCD
ACE

Traversal: BFS

ABDEF
ACFH
BCG

CDG

T
B 1
C
D
E
F
G EFH
H

N W N N Rk R
o m o ©O > P> P

DG

ANRNRRRNY

uu Adjacent Edges

Traversal: BFS EO ——

B 1 ACE

C ABDEF
D ACFH
E
F
G
H

BCG

CDG

EFH

N W NN R R
o m o o > >» >

DG

ANRNRERNNY

Running time of BFS Eﬂ
1 ACE

1 BADEF

1 ACFH

2
2
3
2

BCG

CDG

EFH

DG

ANRARRNNY

E Adjacent Edges

- CBD
ACE

BFS Observations

What is the shortest path from A to H?
BADEF

ACFH
BCG
What is the shortest path from E to H? CDG

EFH

T o m™"moo o >
NU)NNI—\I—‘I—\OE

o m o o > >» >

DG

If my node has distance d, do | know anything
about the nodes connected by a cross edge?

BFS Observations @

BFS can be used to detect cycles

The value of d in BFS is the shortest distance from source to every vertex

In BFS, the endpoints of a cross edge never differ in distance, d, by
more than 1. In other words for vertices u and v connected by a

cross edge: (ld(u) —d(v)| < 1)

