Algorithms and Data Structures for Data Science Graph Implementations 3

CS 277
April 17, 2023
Brad Solomon

Exam 3 Signups Available

April 24 - April 27

Very limited window for makeup exams (since end of semester is near)

Covers content from week 10 - 14

Learning Objectives

Review adjacency matrix graph implementations

Introduce adjacency list implementation

Discuss the strengths and weaknesses of each implementation

Graph Implementation: Adjacency Matrix

Vertex Storage:

A dictionary (or list) of vertices
Also stores the indexing of the matrix

Edge Storage:

$\mathrm{A}|\mathrm{v}| \mathrm{x}|\mathrm{v}|$ matrix storing edges
$e[r][c]=1$ if there is an edge between r and c

Graph Implementation: Adjacency Matrix

Pros:

Fast lookup and modification of edges
Easily extended to weighted and directed

Cons:

Slow to add or remove new vertices
Getting the degree of nodes is slow
Storage costs are relatively large

Adjacency List

Adjacency List

Vertex Storage:

Edge Storage:

Adjacency List

getVertices():

Adjacency List

getEdges(v):

Adjacency List

areAdjacent(u, v):

Adjacency List

Adjacency List

Adjacency List

insertEdge(u, v):

Adjacency List

removeEdge(u, v):

Adjacency List

Pros:

Cons:

Adjacency List

How would our data structure change if...

Edges are directed:

Adjacency List

How would our data structure change if...

Edges are weighted:

$|V|=n,|E|=m$

Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	n^{2}	n+m
insertVertex(v)	1*	n*	1*
removeVertex(v)	$\mathrm{m}^{* *}$	n	$\operatorname{deg}(\mathrm{v})^{* * *}$
insertEdge(u, v)	1	1	1*
removeEdge(\mathbf{u}, v)	m	1	$\begin{gathered} \min (\operatorname{deg}(u), \\ \operatorname{deg}(v)) \end{gathered}$
getEdges(v)	m	n	deg(v)
areAdjacent(u, v)	m	1	$\begin{gathered} \min (\operatorname{deg}(u), \\ \operatorname{deg}(v)) \end{gathered}$

Graph Traversals

There is no clear order in a graph (even less than a tree!)
How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work - lets compare:

- Rooted
- Acyclic

-

Traversal: BFS

Traversal: BFS

v	d	P	Adjacent Edges
A			
B			
C			
D			
E			
F			
G			
H			

Traversal: BFS

| v | d | P | Adjacent Edges |
| :--- | :--- | :--- | :--- | :--- |
| A | 0 | - | B C D |
| B | 1 | A | A C E |
| C | 1 | A | A B B D E F |
| D | 1 | A | A C F H |
| E | 2 | B | B C C G |
| F | 2 | C | C D G G |
| G | 3 | E | E F H |
| H | 2 | D | D G |

Traversal: BFS

| v | d | P | Adjacent Edges |
| :--- | :--- | :--- | :--- | :--- |
| A | 0 | - | C B D D |
| B | 1 | A | A C E |
| C | 1 | A | A B B D E F |
| D | 1 | A | A C F H |
| E | 2 | C | B C G G |
| F | 2 | C | C D G G |
| G | 3 | E | E F H |
| H | 2 | D | D G |

Running time of BFS

| v | d | P | Adjacent Edges |
| :--- | :--- | :--- | :--- | :--- |
| A | 0 | - | C B D |
| B | 1 | A | A C E |
| C | 1 | A | B A D E F |
| D | 1 | A | A C F H |
| E | 2 | C | B C G G |
| F | 2 | C | C D G G |
| G | 3 | E | E F H |
| H | 2 | D | D G |

BFS Observations

What is the shortest path from \mathbf{A} to \mathbf{H} ?

What is the shortest path from \mathbf{E} to \mathbf{H} ?

v	d	P	Adjacent Edges
A	0	-	C B D
B	1	A	A C E
C	1	A	B A D E F
D	1	A	A C F H
E	2	C	B C G
F	2	C	C D G
G	3	E	E F H
H	2	D	D G

If my node has distance \mathbf{d}, do I know anything about the nodes connected by a cross edge?

BFS Observations

BFS can be used to detect cycles

The value of d in BFS is the shortest distance from source to every vertex

In BFS, the endpoints of a cross edge never differ in distance, d , by more than 1 . In other words for vertices u and v connected by a cross edge: $(|d(u)-d(v)| \leq 1)$

