Algorithms and Data Structures for Data Science Graph Implementations 3 CS 277 Brad Solomon

Department of Computer Science

Exam 3 Signups Available

April 24 — April 27

Very limited window for makeup exams (since end of semester is near)

Covers content from week 10 — 14

Learning Objectives

Review adjacency matrix graph implementations

Introduce adjacency list implementation

Discuss the strengths and weaknesses of each implementation

Graph Implementation: Adjacency Matrix

Vertex Storage:

A dictionary (or list) of vertices

Also stores the indexing of the matrix

Edge Storage:

A |v| x |v| matrix storing edges

e[r][c] = 1 if there is an edge between r and c

Graph Implementation: Adjacency Matrix

Fast lookup and modification of edges

Easily extended to weighted and directed

Cons:

Pros:

Slow to add or remove new vertices

Getting the degree of nodes is slow

Storage costs are relatively large

U

(v)

Vertex Storage:

W

Z

Edge Storage:

U

(v)

Vertex Storage:

w

Z

Edge Storage:

U

V

getVertices():

(w)

U

V

getEdges(v):

(w)

U

V

areAdjacent(u, v):

(w)

U

V

insertVertex(v):

(w)

U

V

removeVertex(v):

(w)

U

insertEdge(u, v):

U

V

removeEdge(u, v):

(w)

Z

Pros:

How would our data structure change if...

Edges are directed:

How would our data structure change if...

Edges are weighted:

|V| = n, |E| = m

Expressed as O(f)	Edge List	Adjacency Matrix	Adjacency List
Space	n+m	n²	n+m
insertVertex(v)	1*	n*	1*
removeVertex(v)	m**	n	deg(v)***
insertEdge(u, v)	1	1	1*
removeEdge(u, v)	m	1	min(deg(u), deg(v))
getEdges(v)	m	n	deg(v)
areAdjacent(u, v)	m	1	min(deg(u), deg(v))

Graph Traversals

There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:

- Rooted
- Acyclic

- •
- •

Traversal: BFS

V	d	Ρ	Adjacent Edges
A			
В			
С			
D			
Ε			
F			
G			
Η			

Traversal: BFS

V	d	Ρ	Adjacent Edges
Α	0	-	BCD
В	1	Α	ACE
С	1	Α	ABDEF
D	1	Α	ACFH
Ε	2	В	BCG
F	2	С	CDG
G	3	Ε	EFH
Η	2	D	DG

Traversal: BFS

V	d	Ρ	Adjacent Edges
Α	0	-	CBD
B	1	Α	ACE
С	1	Α	ABDEF
D	1	Α	ACFH
Ε	2	С	BCG
F	2	С	CDG
G	3	Ε	EFH
Η	2	D	DG

Running time of BFS

V	d	Ρ	Adjacent Edges
Α	0	-	CBD
В	1	Α	ACE
С	1	Α	BADEF
D	1	Α	ACFH
Ε	2	С	BCG
F	2	С	CDG
G	3	Ε	EFH
Η	2	D	DG

BFS Observations

What is the shortest path from **A** to **H**?

What is the shortest path from **E** to **H**?

If my node has distance **d**, do I know anything about the nodes connected by a **cross edge**?

v	d	Ρ	Adjacent Edges
Α	0	-	CBD
В	1	Α	ACE
С	1	Α	BADEF
D	1	Α	АСГН
Ε	2	С	BCG
F	2	С	CDG
G	3	Ε	EFH
Н	2	D	DG

BFS Observations

BFS can be used to detect cycles

The value of d in BFS is the shortest distance from source to every vertex

In BFS, the endpoints of a cross edge never differ in distance, d, by more than 1. In other words for vertices u and v connected by a cross edge: $(|d(u) - d(v)| \le 1)$