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Exam 3 Signups Available

April 24 — April 27
Very limited window for makeup exams (since end of semester is near)

Covers content from week 10 — 14




Learning Objectives

Review adjacency matrix graph implementations
Introduce adjacency list implementation

Discuss the strengths and weaknesses of each implementation




Graph Implementation: Adjacency Matrix
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Graph Implementation: Adjacency Matrix

Pros:

Fast lookup and modification of edges

Easily extended to weighted and directed

Cons:

Slow to add or remove new vertices

Getting the degree of nodes is slow

Storage costs are relatively large




Adjacency List
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Adjacency List

Vertex Storage:
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Adjacency List

getVertices():

_________

_________




Adjacency List

getEdges(v):

_________

_________




Adjacency List

areAdjacent(u, v):

_________

_________




Adjacency List

insertVertex(v):

_________

_________




Adjacency List

removeVertex(v):

_________

_________




Adjacency List

insertEdge(u, v):

_________

_________




Adjacency List

removeEdge(u, v):

_________

_________




Adjacency List

Pros:
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Adjacency List

How would our data structure change if...

/ \ Edges are directed:

_________

_________




Adjacency List

How would our data structure change if...

/ \ Edges are weighted:

_________

_________




|IV|=n, |E|=m

Edge List Adjacency Matrix Adjacency List
Expressed as O(f)
n+m n2 n+m

Space

insertVertex(v) 1* n* 1*
removeVertex(v) m** n deg(v)***
insertEdge(u, v) 1 1 1%

in( d ’
removeEdge(u, v) m 1 min( deg(u)

deg(v) )
getEdges(v) m n deg(v)
areAdjacent(u, v) m 1 min( deg(u),

deg(v) )




Graph Traversals

There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:
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Traversal: BFS




-
Traversal: BFS o [P Adjacent Eds

o
A
B
C
D
E
F
G
H




uu Adjacent Edges
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Traversal: BFS
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uu Adjacent Edges

Traversal: BFS EO ——
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E Adjacent Edges
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BFS Observations

What is the shortest path from A to H?
BADEF

ACFH
BCG
What is the shortest path from E to H? CDG

EFH
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If my node has distance d, do | know anything
about the nodes connected by a cross edge?




BFS Observations @

BFS can be used to detect cycles

The value of d in BFS is the shortest distance from source to every vertex

In BFS, the endpoints of a cross edge never differ in distance, d, by
more than 1. In other words for vertices u and v connected by a

cross edge: ( ld(u) —d(v)| < 1)




