
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277

Brad Solomon

April 17, 2023

Graph Implementations 3

Exam 3 Signups Available
April 24 — April 27

Very limited window for makeup exams (since end of semester is near)

Covers content from week 10 — 14

Learning Objectives

Introduce adjacency list implementation

Discuss the strengths and weaknesses of each implementation

Review adjacency matrix graph implementations

v

u

w z

Vertex Storage:

Edge Storage:

Graph Implementation: Adjacency Matrix

A dictionary (or list) of vertices

Also stores the indexing of the matrix

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

U 0

V 1

W 2

Z 3

A |v| x |v| matrix storing edges

e[r][c] = 1 if there is an edge between r and c

v

u

w z

Pros:

Cons:

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

Fast lookup and modification of edges

Easily extended to weighted and directed

Slow to add or remove new vertices

Getting the degree of nodes is slow

Storage costs are relatively large

Adjacency List

v

u

w z

u

v

w

z

Vertex Storage:

Edge Storage:

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Vertex Storage:

Edge Storage:

Adjacency List

getVertices():

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

getEdges(v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List

areAdjacent(u, v):

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

insertVertex(v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

removeVertex(v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

insertEdge(u, v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List

removeEdge(u, v):

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List
Pros:

Cons:

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Edges are directed:

How would our data structure change if…

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Edges are weighted:

How would our data structure change if…

Expressed as O(f)
Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1* n* 1*

removeVertex(v) m** n deg(v)***

insertEdge(u, v) 1 1 1*

removeEdge(u, v) m 1
min(deg(u),

deg(v))

getEdges(v) m n deg(v)

areAdjacent(u, v) m 1
min(deg(u),

deg(v))

|V|= n,|E|= m

Graph Traversals
There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

• Rooted

• Acyclic

•

•

•

•

Tree traversals won’t work — lets compare:

Traversal: BFS

A

C D

E

B

G H

F

Traversal: BFS v d P Adjacent Edges

A

B

C

D

E

F

G

H

A

C D

E

B

G H

F

Traversal: BFS

G H F E D C B A

v d P Adjacent Edges

A 0 - B C D

B 1 A A C E

C 1 A A B D E F

D 1 A A C F H

E 2 B B C G

F 2 C C D G

G 3 E E F H

H 2 D D G

A

C D

E

B

G H

F

Traversal: BFS

G H F E D B C A

v d P Adjacent Edges

A 0 - C B D

B 1 A A C E

C 1 A A B D E F

D 1 A A C F H

E 2 C B C G

F 2 C C D G

G 3 E E F H

H 2 D D G

A

C D

E

B

G H

F

Running time of BFS

G H F E D B C A

v d P Adjacent Edges

A 0 - C B D

B 1 A A C E

C 1 A B A D E F

D 1 A A C F H

E 2 C B C G

F 2 C C D G

G 3 E E F H

H 2 D D G

A

C D

E

B

G H

F

BFS Observations v d P Adjacent Edges

A 0 - C B D

B 1 A A C E

C 1 A B A D E F

D 1 A A C F H

E 2 C B C G

F 2 C C D G

G 3 E E F H

H 2 D D G

A

C D

E

B

G H

F

What is the shortest path from A to H?

What is the shortest path from E to H?

If my node has distance d, do I know anything
about the nodes connected by a cross edge?

BFS Observations
BFS can be used to detect cycles

The value of d in BFS is the shortest distance from source to every vertex

In BFS, the endpoints of a cross edge never differ in distance, d, by
more than 1. In other words for vertices and connected by a

cross edge:

u v
(|d(u) − d(v) | ≤ 1)

