
Department of Computer Science

Algorithms and Data Structures for Data Science

CS 277
Brad Solomon

April 12, 2023

Graph Implementations 2

This week only: Lab room and OH Changes
Friday April 14th: AE3’s Celebration of Teaching in 1306 Everitt

Our lab will be in 2101 Everitt instead!

Office Hour Changes: My OH will be Friday between 3:15 and 4:15
There will not be OH on Thursday April 13th!

Lab Feedback
Still read them and appreciate feedback

lab_huffman needs work in the future in both presentation and content

lab_trees and lab_avl were both highly rated

Learning Objectives

Introduce adjacency list implementation

Discuss the strengths and weaknesses of each implementation

Review edge list and adjacency matrix graph implementations

Graphs
Given a roster of students for each class, build a graph which tracks
whether there are at least three students in common between two classes

What is a vertex?

What is an edge?

Are the edges directed or undirected?

Are the edges weighted or unweighted?

Graph ADT
Find

Insert

Remove

getVertices() — return the list of vertices in a graph
getEdges(v) — return the list of edges that touch the vertex v
areAdjacent(u, v) — returns a bool based on if an edge from u to v exists

insertVertex(v) — adds a vertex to the graph
insertEdge(u, v) — adds an edge to the graph

removeVertex(v) — removes a vertex from the graph
removeEdge(u, v) — removes an edge from the graph

v

u

w z

Vertex Storage:

Edge Storage:

|V|= n,|E|= mGraph Implementation: Edge List
The equivalent of an ‘unordered’ data structure

u

v

w

z

Not stored at all (recovered from edges)
or

An unordered list of vertices

An unordered list of edges (as tuples)
[or equivalent]

v

u

w z

Edges are weighted:

Graph Implementation: Edge List
How would our data structure change if…

u

v

w

z

v

u

w z

Edges are directed:

Graph Implementation: Edge List
How would our data structure change if…

u

v

w

z

v

u

w z

Vertex Storage:

Edge Storage:

u v w z

u

v

w

z

Graph Implementation: Adjacency Matrix

U

V

W

Z

v

u

w z

getVertices():

Graph Implementation: Adjacency Matrix

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

U 0

V 1

W 2

Z 3

v

u

w z

getEdges(v):

Graph Implementation: Adjacency Matrix

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

U 0

V 1

W 2

Z 3

v

u

w z

areAdjacent(u, v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

v

u

w z

insertVertex(v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

v

u

w z

insertEdge(u, v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

v

u

w z

removeVertex(v):

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

removeEdge(u, v):

v

u

w z

Pros:

Cons:

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

v

u

w z

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

Edges are directed:

How would our data structure change if…

v

u

w z

Graph Implementation: Adjacency Matrix

U 0

V 1

W 2

Z 3

u v w z

u 0 1 1 0

v 1 0 1 0

w 1 1 0 1

z 0 0 1 0

Edges are weighted:

How would our data structure change if…

Adjacency List

v

u

w z

u

v

w

z

Vertex Storage:

Edge Storage:

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Vertex Storage:

Edge Storage:

Adjacency List

getVertices():

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

getEdges(v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List

areAdjacent(u, v):

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

insertVertex(v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

removeVertex(v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

insertEdge(u, v):

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List

removeEdge(u, v):

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List
Pros:

Cons:

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Edges are directed:

How would our data structure change if…

Adjacency List

v

u

w z

u

v

w

z

v w

u w

v u z

z

d=2

d=2

d=3

d=1

Edges are weighted:

How would our data structure change if…

Expressed as O(f)
Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1* n* 1*

removeVertex(v) m** n deg(v)

insertEdge(u, v) 1 1 1*

removeEdge(u, v) m 1
min(deg(u),

deg(v))

getEdges(v) m n deg(v)

areAdjacent(u, v) m 1
min(deg(u),

deg(v))

|V|= n,|E|= m

Next week: Traversals
There is no clear order in a graph (even less than a tree!)

How can we systematically go through a complex graph in the fewest steps?

