Algorithms and Data Structures for Data Science AVL Trees 2

CS 277 Brad Solomon April 5, 2023

Department of Computer Science

Mini-Project 2: Sketching

Average: 88%Standard Dev: 17.7%Median: 96%

Based on grades, things look like they went well

Most justification was reasonable (though occasionally unrealistic)

If you received below a 70% on part 3, consider coming to office hours!

Learning Objectives

Review AVL rotations

Review discussing AVL functions (remove)

Prove that the AVL tree's height is bounded

AVL Tree Rotations

All rotations are O(1)

All rotations reduce subtree height by one

AVL Insertion

Rebalance Function:
1) Checks balance at node
2) If node is unbalanced, pick rotation

3) Perform rotation

insert(6.5)

1	<pre>def insert_helper(node, key, val):</pre>
2	
3	
4	
5	return rebalance(node)

Theorem:

If an insertion occurred in subtrees t_3 or t_4 and an imbalance was first detected at t, then a ______ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t** is _____ and the balance factor of **t->right** is _____.

Theorem:

If an insertion occurred in subtrees t_1 or t_2 and an imbalance was first detected at t, then a ______ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t** is _____ and the balance factor of **t->left** is _____.

Theorem:

If an insertion occurred in subtrees t_2 or t_3 and an imbalance was first detected at t, then a ______ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t** is _____ and the balance factor of **t->right** is _____.

Theorem:

If an insertion occurred in subtrees t_2 or t_3 and an imbalance was first detected at t, then a ______ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t** is _____ and the balance factor of **t->left** is _____.

AVL Rotations

AVL Insertion Practice

AVL Tree Analysis

Ċ

For an AVL tree of height h:

Find runs in: ______.

Insert runs in: ______.

Remove runs in: ______.

Claim: The height of the AVL tree with n nodes is: ______.

Claim: The height of an AVL tree with n nodes is bounded by $O(\log n)$

Claim: The height of an AVL tree with n nodes is bounded by $O(\log n)$

If we assume a balanced tree is $O(\log n)$, does insertion break this?

Insertion increases height by _____

How many rotations performed: _

If we assume a balanced tree is $O(\log n)$, does remove break this?

Remove decreases height by ____

How many rotations performed: _

If we assume a balanced tree is $O(\log n)$, does remove break this?

Remove decreases height by ____

How many rotations performed: _

Summary of Balanced BST Max Height: 1.44 * log(n). [O(log n)]

Rotations:

- Zero rotations on **find**
- One rotation on **insert**
- O(h) == O(log(n)) rotations on **remove**

Summary of Trees

The shape of a **binary trees** can be directly meaningful

An unbalanced **binary search tree** can still be useful in the real world

An balanced **binary search tree** is guaranteed to take O(log n)

Whats next?

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.

(In CS 277) a tree is also:

1) Acyclic — contains no cycles

2) Rooted — root node connected to all nodes

