Algorithms and Data Structures for Data Science AVL Trees 2

Mini-Project 2: Sketching

Average: 88\% Standard Dev: 17.7\% Median: 96\%

Based on grades, things look like they went well
Most justification was reasonable (though occasionally unrealistic)
If you received below a 70% on part 3 , consider coming to office hours!

Learning Objectives

Review AVL rotations

Review discussing AVL functions (remove)

Prove that the AVL tree's height is bounded

AVL Tree Rotations

AVL Insertion
Rebalance Function:

1) Checks balance at node
2) If node is unbalanced, pick rotation
3) Perform rotation

```
def insert_helper(node, key, val):
```

 return rebalance(node)

Picking the correct rotation (insert)

Theorem:
If an insertion occurred in subtrees $\mathrm{t}_{\mathbf{3}}$ or \mathbf{t}_{4} and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is ___ and the balance factor of t->right is \qquad .

Picking the correct rotation (insert)

Theorem:

If an insertion occurred in subtrees \mathbf{t}_{1} or $\mathbf{t}_{\mathbf{2}}$ and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is ___ and the balance factor of t->left is \qquad .

Picking the correct rotation (insert)

Theorem:

If an insertion occurred in subtrees $\mathbf{t}_{\mathbf{2}}$ or $\mathbf{t}_{\mathbf{3}}$ and an imbalance was first detected at \mathbf{t}, then a \qquad
rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is \qquad and the balance factor of t->right is \qquad .

Picking the correct rotation (insert)

Theorem:

If an insertion occurred in subtrees $\mathbf{t}_{\mathbf{2}}$ or t_{3} and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is \qquad and the balance factor of t->left is \qquad .

AVL Rotations

LeftRight
RightLeft

AVL Insertion Practice

AVL Insertion Practice

AVL Remove

AVL Tree Analysis

For an AVL tree of height h :

Find runs in: \qquad .

Insert runs in: \qquad .

Remove runs in: \qquad .

Claim: The height of the AVL tree with n nodes is: \qquad .

AVL Tree Height

Claim: The height of an AVL tree with n nodes is bounded by $O(\log n)$

AVL Tree Height

Claim: The height of an AVL tree with n nodes is bounded by $O(\log n)$

AVL Tree Height

If we assume a balanced tree is $O(\log n)$, does insertion break this?

Insertion increases height by

\qquad .

How many rotations performed:

AVL Tree Height

If we assume a balanced tree is $O(\log n)$, does remove break this?
Remove decreases height by \qquad .

How many rotations performed:

AVL Tree Height

If we assume a balanced tree is $O(\log n)$, does remove break this?

Summary of Balanced BST
Max Height: $1.44{ }^{*} \log (n)$. [$\left.O(\log n)\right]$
Rotations:
Zero rotations on find
One rotation on insert
$\mathrm{O}(\mathrm{h})==\mathrm{O}(\log (\mathrm{n}))$ rotations on remove

Summary of Trees

The shape of a binary trees can be directly meaningful

An unbalanced binary search tree can still be useful in the real world

An balanced binary search tree is guaranteed to take $\mathrm{O}(\log \mathrm{n})$

Whats next?

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.
(In CS 277) a tree is also:

1) Acyclic - contains no cycles
2) Rooted — root node connected to all nodes

